Appendix B
Draft Airport Layout Plan (ALP) Update Narrative Report
(January 2015)
This page is left intentionally blank.
BWI Marshall Airport Layout Plan Update
Narrative Report

Table of Contents

1. **INTRODUCTION** .. 1
 - 1.1. PURPOSE .. 1
 - 1.2. AIRPORT BACKGROUND .. 1
2. **DEMAND FORECAST** .. 2
 - 2.1. BACKGROUND .. 2
 - 2.2. BASED AIRCRAFT FORECASTS .. 2
 - 2.3. ENPLANEMENTS FORECASTS .. 3
 - 2.4. OPERATIONS FORECASTS .. 3
 - 2.5. ANNUAL INSTRUMENT APPROACHES .. 4
 - 2.6. FORECAST SUMMARY .. 4
 - 2.7. CRITICAL AIRCRAFT .. 5
3. **WIND COVERAGE** .. 6
4. **NEAR-TERM AND FUTURE APPROACH PROCEDURE REQUIREMENTS** 7
5. **MODIFICATIONS OF STANDARDS** .. 7
6. **DECLARED DISTANCES** .. 9
7. **DEVELOPMENT SUMMARY** ... 11
 - 7.1. DEVELOPMENT PROJECTS COMPLETED SINCE LAST ALP (FEBRUARY 2011) 11
 - 7.1.1. AIRSIDE .. 12
 - 7.1.2. TERMINAL .. 13
 - 7.1.3. LANDSIDE .. 14
 - 7.2. APPROVED ALP/ENVIRONMENTAL FINDING/CONSTRUCTION-IN-PROGRESS 14
 - 7.2.1. 2015 PROJECTS ... 14
 - 7.3. PHASE 1 (2016 – 2020) ... 16
 - 7.3.1. AIRFIELD AND AIRSIDE IMPROVEMENTS .. 16
 - 7.3.2. TERMINAL ENHANCEMENTS ... 49
 - 7.3.3. LANDSIDE IMPROVEMENTS ... 59
 - 7.3.4. GENERAL AVIATION/HANGAR IMPROVEMENTS .. 68
 - 7.3.5. SUPPORT FACILITIES ... 69
 - 7.4. PHASE 2 (2021 – 2025) ... 82
 - 7.4.1. AIRSIDE .. 82
 - 7.4.2. TERMINAL .. 83
 - 7.4.3. LANDSIDE .. 83
 - 7.5. PHASE 3 (2026 – ULTIMATE) ... 85
 - 7.5.1. AIRSIDE .. 85
 - 7.5.2. TERMINAL .. 85
 - 7.5.3. LANDSIDE .. 85
8. **WILDLIFE HAZARD MANAGEMENT ISSUES** .. 86
9. PRELIMINARY IDENTIFICATION OF ENVIRONMENTAL FEATURES ... 86
10. CAPITAL IMPROVEMENT PROGRAM .. 87

APPENDIX A – FAA TERMINAL AREA FORECASTS ... 90

LIST OF TABLES

Table 1: Forecasts of Total Enplanements and Total Operations ... 2
Table 2: Forecasts of Based Aircraft ... 3
Table 3: Forecasts of Total Enplanements ... 3
Table 4: Forecasts of Total Operations .. 4
Table 5: IFR Operations .. 4
Table 6: Boeing 777 – Projected Operations .. 5
Table 7: Runway Design Codes by Runway ... 6
Table 8: Wind Coverage (Percent) .. 7
Table 9: Modifications of Design Standards .. 8
Table 10: Existing Declared Distances ... 9
Table 11: In-Progress (2014-2015) Declared Distances ... 10
Table 12: Phase 1 (2016-2020) Declared Distances ... 10
Table 13: Phase 2 (2021-2025) Declared Distances ... 11
Table 14: Phase 3 (2026-Ultimate) Declared Distances ... 11
Table 15: Obstructions .. 37
Table 16: BWI ALP Projects (Phase 1) ... 88
Table 17: Additional Projects (2013-2020) – BWI Paving (not included in ALP) .. 89

LIST OF FIGURES

Figure 1: Relocate Taxiways Romeo (R) and Foxtrot (F) ... 17
Figure 2: Taxiway Uniform (U) 3 Construction – Phase 1 .. 19
Figure 3: International Terminal Area Taxiway Fillets/Shoulders ... 21
Figure 4: New Infill Pavement Near Taxiways T, P and Future P ... 22
Figure 5: Taxiway Connectors (between Taxiways T-P) .. 24
Figure 6: Relocate Taxiways Kilo (K) & Lima (L) ... 25
Figure 7: Isolation/RON Apron Construction .. 27
Figure 8: Runway 28 Deicing Pad Expansion ... 29
Figure 9: Helipad Relocation ... 30
Figure 10: Runway 10 .. 33
Figure 11: Runway 15R ... 33
Figure 12: Runway 15L ... 33
Figure 13: Runway 28 .. 33
Figure 14: Runway 33L ... 33
Figure 15: Runway 33R ... 33
Figure 16: Relocate Taxiway Hotel (H) ... 41
Figure 17: Apron Fill at North Cargo Positions F18/F20 ... 43
Figure 18: VSR Section from Runway 33L to Future Fire Training Facility ... 44
Figure 19: Taxiway Victor (V) ... 45
Figure 20: Runway 15R Deicing Pad ... 47
Figure 21: Runway 10 Hold Pad.. 48
Figure 22: Commuter Concourse Demolition and Remain Overnight (RON) Parking Construction 50
Figure 23: Concourse D 2-Gate Extension... 51
Figure 24: Concourse E (4-Gate Expansion) ... 53
Figure 25: Relocate Security Checkpoint Juliet .. 55
Figure 26: Relocate Airfield Lighting Vault ... 56
Figure 27: New Sky Bridge C .. 58
Figure 28: New Terminal Response Fire Rescue Station .. 59
Figure 29: New Vehicle Service Station ... 61
Figure 30: Terminal Roadway Widening and Access Improvements ... 62
Figure 31: Upper Level Roadway Widening at Concourse E ... 64
Figure 32: Building 113 Demolition .. 65
Figure 33: Taxicab Support Building at Former Hotel Site .. 67
Figure 34: New Aircraft Maintenance Facilities ... 68
Figure 35: Second FBO .. 70
Figure 36: New Airport Traffic Control Tower .. 71
Figure 37: Relocate Fire Training Facility .. 73
Figure 38: Airport Maintenance Complex Relocation and Consolidation (Phase 1) 75
Figure 39: Northwest Quadrant Perimeter Road Construction (Runway 10) ... 77
Figure 40: Existing Aircraft Rescue and Firefighting Facility (ARFF) Expansion Bays 79
Figure 41: Runway Deicing Chemical Storage and Access Road ... 81
1. Introduction

1.1. Purpose

Baltimore/Washington International Thurgood Marshall Airport (BWI Marshall or the Airport) completed a Master Plan and Airport Layout Plan (ALP) in 2011. The 2011 Master Plan and ALP identified airfield, terminal, and landside development to accommodate projected increases in future aviation travel demand at BWI Marshall. Due to projects currently under design, and recently completed projects that have occurred at the Airport, the Maryland Aviation Administration (MAA) decided to update the ALP to accurately reflect current conditions as well as changes to the proposed development plan that have transpired since 2011.

The 2015 ALP was developed to depict projects at BWI Marshall in multiple phases. There is a current phase for Approved ALP/Environmental Finding/Construction-In-Progress projects. This In-Progress Phase includes ongoing and/or unconstructed projects that were evaluated under the BWI Marshall Environmental Assessment (EA) for which a Finding of No Significant Impact (FONSI) was issued on April 23, 2012. The remaining phases include Phase 1 (2016-2020), Phase 2 (2021-2025), and Phase 3 (2026-Ultimate). The following narrative report outlines only Phase 1 projects which were not evaluated under the previous EA and are proposed to be completed by 2020. Projects are categorized by airfield, terminal, landside, general aviation, and support facilities. Each project is described in detail including justification as to why the project is needed, other alternatives that were considered, and standards that will be used during design and construction. Additionally, Federal Aviation Regulations (FAR) Part 77 imaginary surfaces, Airport Traffic Control Tower (ATCT) line-of-sight, and navigational aid critical areas were assessed for potential impacts based on the proposed projects. Lastly, a proposed project schedule is documented for each improvement based on construction and potential completion date.

1.2. Airport Background

BWI Marshall is owned and operated by the MAA, a modal administration of the Maryland Department of Transportation. BWI Marshall is located nine miles south of Baltimore and 32 miles north of Washington, D.C.

Enplaned passengers continue to increase at BWI Marshall; from 1990 to 2010, there was an average annual growth rate of 3.80 percent. Total enplaned passengers are forecasted to grow from the 2012 actual count of 11,370,372 to over 16.6 million in 2030, an average annual increase of 2.30 percent.

The following section provides a summary of the demand forecast projected at BWI Marshall which helps to justify the need for several projects to be completed by 2020.
2. Demand Forecast

2.1. Background

In order to accurately develop alternatives to accommodate forecasted airport activities, the 2011 Master Plan presented a forecast of aviation demand for BWI Marshall for the years 2010, 2015, 2020, 2025, and 2030. Activity levels were projected for passenger enplanements, aircraft operations, and air cargo volumes. In light of the 2015 ALP update, MAA adopted the Federal Aviation Administration (FAA) Terminal Area Forecast (TAF) projections. The January 2013 TAF projects forecasts for years 2013 through 2040 (See Appendix A for the complete table of the BWI Marshall TAF). For purposes of the 2015 ALP Update, MAA has accepted the TAF forecast estimates through 2030.

The actual passenger enplanements and aircraft operations data from 2012 as well as the FAA TAF forecasts for years 2015, 2020, 2025, and 2030 are outlined in the following table:

<table>
<thead>
<tr>
<th>YEAR</th>
<th>TOTAL ENPLANEMENTS</th>
<th>TOTAL AIRCRAFT OPERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>11,370,372</td>
<td>268,186</td>
</tr>
<tr>
<td>2015</td>
<td>10,867,752</td>
<td>270,262</td>
</tr>
<tr>
<td>2020</td>
<td>12,570,031</td>
<td>297,414</td>
</tr>
<tr>
<td>2025</td>
<td>14,459,505</td>
<td>325,344</td>
</tr>
<tr>
<td>2030</td>
<td>16,635,263</td>
<td>357,103</td>
</tr>
</tbody>
</table>

Sources:
FAA TAF, January 2013

The forecast for passenger enplanements and total aircraft operations through 2030 provides an indicator of projects that are necessary to ensure that BWI Marshall is sufficiently prepared to accommodate demand, meet FAA design and safety standards, and contribute to an overall improved Airport through 2030.

2.2. Based Aircraft Forecasts

The 2013 FAA TAF indicates the following based aircraft forecasts:
Table 2: Forecasts of Based Aircraft

<table>
<thead>
<tr>
<th>YEAR</th>
<th>SINGLE ENGINE</th>
<th>MULTI ENGINE</th>
<th>JET</th>
<th>HELICOPTER</th>
<th>FAA TAF TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>2012</td>
<td>50</td>
<td>13</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Forecast</td>
<td>2015</td>
<td>57</td>
<td>13</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Forecast</td>
<td>2020</td>
<td>66</td>
<td>13</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Forecast</td>
<td>2025</td>
<td>76</td>
<td>13</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Forecast</td>
<td>2030</td>
<td>89</td>
<td>13</td>
<td>24</td>
<td>0</td>
</tr>
</tbody>
</table>

Sources: FAA TAF, January 2013

2.3. Enplanements Forecasts

Passenger enplanement forecasts are considered to be the most critical of aviation demand forecasts considering that aircraft operations are essentially derived from determining passenger enplanement counts. The passenger enplanement forecast for BWI Marshall in accordance with the 2013 FAA TAF shows an increase in total enplanements from 2015 to 2020 at an average annual increase of 2.95 percent. Passenger enplanements are forecast to grow from just under 10.9 million in 2015 to over 16.6 million in 2030. The growth is anticipated to average 2.88 percent annually over the fifteen-year period. The table below outlines the 2012 actual enplanements as well as forecast enplanements at BWI Marshall:

Table 3: Forecasts of Total Enplanements

<table>
<thead>
<tr>
<th>YEAR</th>
<th>AIR CARRIER</th>
<th>COMMUTER</th>
<th>TOTAL ENPLANEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>2012</td>
<td>11,276,028</td>
<td>94,344</td>
</tr>
<tr>
<td>Forecast</td>
<td>2015</td>
<td>10,396,869</td>
<td>470,883</td>
</tr>
<tr>
<td>Forecast</td>
<td>2020</td>
<td>12,053,701</td>
<td>516,330</td>
</tr>
<tr>
<td>Forecast</td>
<td>2025</td>
<td>13,897,768</td>
<td>561,737</td>
</tr>
<tr>
<td>Forecast</td>
<td>2030</td>
<td>16,024,126</td>
<td>611,137</td>
</tr>
</tbody>
</table>

2.4. Operations Forecasts

Aircraft operations consist of aircraft take-offs and landings. The following table shows the operations forecasts for BWI Marshall in accordance with the 2013 FAA TAF. Total operations are expected to have annual average growth of 1.60 percent from 2012 through 2030. Operations are anticipated to decrease in the near-term at an average annual percentage rate of -0.20 through 2015, and then increase at an annual rate of 1.87 percent from 2015 through 2030.
Table 4: Forecasts of Total Operations

<table>
<thead>
<tr>
<th>YEAR</th>
<th>ITINERANT COMMERCIAL AIR CARRIERS</th>
<th>ITINERANT GA</th>
<th>ITINERANT MILITARY</th>
<th>TOTAL ITINERANT</th>
<th>TOTAL LOCAL OPS</th>
<th>TOTAL AIRCRAFT OPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>2012</td>
<td>251,334</td>
<td>15,610</td>
<td>998</td>
<td>267,942</td>
<td>244</td>
</tr>
<tr>
<td>Forecast</td>
<td>2015</td>
<td>253,867</td>
<td>15,167</td>
<td>960</td>
<td>269,994</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>280,179</td>
<td>16,007</td>
<td>960</td>
<td>297,146</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>307,225</td>
<td>16,891</td>
<td>960</td>
<td>325,076</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>338,049</td>
<td>17,826</td>
<td>960</td>
<td>356,835</td>
<td>268</td>
</tr>
</tbody>
</table>

Sources:
FAA TAF, January 2013

2.5. Annual Instrument Approaches

Annual instrument approach data for BWI Marshall is not readily available. Alternatively, Instrument Flight Rules (IFR) operations are presented below:

Table 5: IFR Operations

<table>
<thead>
<tr>
<th>DATE</th>
<th>IFR ITINERANT</th>
<th>IFR OVERFLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AIR CARRIER</td>
<td>AIR TAXI</td>
</tr>
<tr>
<td>2010</td>
<td>211,054</td>
<td>41,855</td>
</tr>
<tr>
<td>2011</td>
<td>218,771</td>
<td>39,648</td>
</tr>
<tr>
<td>2012</td>
<td>210,818</td>
<td>40,179</td>
</tr>
<tr>
<td>2013</td>
<td>206,901</td>
<td>34,454</td>
</tr>
</tbody>
</table>

Source:
FAA Air Traffic Activity System (ATADS), 2014

2.6. Forecast Summary

As depicted above, total annual passenger enplanements are projected to increase from more than 11.3 million in 2012 to over 16.6 million by 2030. Total aircraft operations are forecast to increase from 268,186 in 2012 to 357,103 in 2030. Given that BWI Marshall is projected to see a growth in enplanements and annual aircraft takeoffs and landings through the forecast period, the Phase 1 projects outlined in Section 7 have been deemed necessary for implementation by 2020.
2.7. Critical Aircraft

FAA Design standards are based on the critical aircraft operating at the airport, which is the most demanding aircraft that performs at least 500 annual operations at the airport. The 2011 Master Plan Technical Report completed by Landrum & Brown indicated that the critical aircraft at BWI Marshall is the Boeing 777-200, which has an Airport Reference Code (ARC) of D-V. ARC D-V includes aircraft with approach speeds of 141 knots or more but less than 166 knots, tail heights of 60 feet up to 66 feet, and wingspans of 171 feet up to 214 feet.

The Boeing 777-200 is operated primarily by international air carriers, as described in the 2011 Master Plan Technical Report. It specifically states that “Group V aircraft are expected to account for 18 percent of international passenger operations by 2030, up from one percent in 2006. Next generation aircraft such as the Boeing 777 and 787 are expected to make up the bulk of the Group V aircraft.”

Regarding Boeing 777-200 operations, BWI Marshall reported that there were 74 operations in 2012 and 198 operations in 2013. In addition, the following table was extracted from the international passenger fleet mix in the 2011 Master Plan.

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FLIGHTS (IN+OUT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>51</td>
</tr>
<tr>
<td>2015</td>
<td>722</td>
</tr>
<tr>
<td>2020</td>
<td>767</td>
</tr>
<tr>
<td>2025</td>
<td>797</td>
</tr>
<tr>
<td>2030</td>
<td>879</td>
</tr>
</tbody>
</table>

Source: Landrum & Brown, 2011

While the existing and future critical aircraft is the Boeing 777-200, there is the possibility that the Boeing 747-400 will become the critical aircraft in the future again. Airport records show that the Boeing 747-400 had 324 operations in 2012 and 304 operations through December 17, 2013 with at least 20 more operations scheduled for the year. Although the operations levels of the current critical aircraft are in line with the forecast, growing from 74 operations in 2012 to near 200 operations by the end of December 2013, the amount of Boeing 747-400 operations in 2012 and 2013 is significantly higher than the current critical aircraft operations. However the growth rate of the Boeing 747-400 operations between 2012 and 2013 is flat. MAA will continue to monitor the operations levels of both aircraft and may consider adopting the Boeing 747-400 aircraft as the critical aircraft again should operations levels increase and outpace the forecasted Boeing 777-200 actual and forecasted operations.
Along with the ARC, FAA AC 150/5300-13A describes the Runway Design Code (RDC) as providing information needed to determine when design standards apply to specific runways as opposed to the airport as a whole. The RDC is composed of the Aircraft Approach Category (AAC), the Airplane Design Group (ADG) and approach visibility minimums. The first two components are the same as with the ARC, but the third component expresses the visibility minimums in runway visual range (RVR) values of 1200 (lower than ¼ mile visibility), 1600 (lower than ½ mile but not lower than ¼ mile visibility), 2400 (lower than ¾ mile but not lower than ½ mile visibility), or 4000 (lower than 1 mile but not lower than ¾ mile visibility). Furthermore, FAA AC 150/5300-13A describes the Runway Reference Code (RRC) as providing the current operational capabilities of a runway where no special operating procedures are necessary. The RDC is based solely on planned development whereas the RRC has an operational application. The RDC and RRC for each runway at BWI Marshall are shown below.

Table 7: Runway Design Codes by Runway

<table>
<thead>
<tr>
<th>RUNWAY</th>
<th>CRITICAL AIRCRAFT</th>
<th>EXISTING RDC</th>
<th>FUTURE RDC</th>
<th>EXISTING RRC</th>
<th>FUTURE RRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>777-200</td>
<td>D-V-600</td>
<td>SAME</td>
<td>D-V-1600</td>
<td>SAME</td>
</tr>
<tr>
<td>28</td>
<td>777-200</td>
<td>D-V-2400</td>
<td>SAME</td>
<td>D-V-2400</td>
<td>SAME</td>
</tr>
<tr>
<td>15R</td>
<td>777-200</td>
<td>D-V-1800</td>
<td>D-V-1200</td>
<td>D-V-2400</td>
<td>SAME</td>
</tr>
<tr>
<td>33L</td>
<td>777-200</td>
<td>D-V-1800</td>
<td>D-V-1200</td>
<td>D-V-2400</td>
<td>D-V-1600</td>
</tr>
<tr>
<td>15L</td>
<td>DASH 8</td>
<td>B-III-5000</td>
<td>SAME</td>
<td>B-III-5000</td>
<td>SAME</td>
</tr>
<tr>
<td>33R</td>
<td>DASH 8</td>
<td>B-III-4000</td>
<td>SAME</td>
<td>B-III-4000</td>
<td>B-III-4000</td>
</tr>
<tr>
<td>Future 10R</td>
<td>777-200</td>
<td>N/A</td>
<td>D-V</td>
<td>N/A</td>
<td>D-V-2400</td>
</tr>
<tr>
<td>Future 28L</td>
<td>777-200</td>
<td>N/A</td>
<td>D-V</td>
<td>N/A</td>
<td>D-V-2400</td>
</tr>
</tbody>
</table>

Sources:
ALP Set – Data Sheet, January 2015
FAA AC 150/5300-13A

3. Wind Coverage

Data was obtained from National Oceanic and Atmospheric Administration (NOAA) for a period of 20 consecutive years (1984 – 2003) to analyze wind coverage at BWI Marshall. Percent runway usage was taken into consideration for both 16 and 20 knot crosswinds. Wind coverage for both Visual Flight Rules (VFR) and IFR is shown below.
Table 8: Wind Coverage (Percent)

<table>
<thead>
<tr>
<th>RUNWAY</th>
<th>VFR</th>
<th>IFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-28</td>
<td>99.95</td>
<td>99.96</td>
</tr>
<tr>
<td>15R-33L</td>
<td>99.91</td>
<td>99.84</td>
</tr>
<tr>
<td>15L-33R</td>
<td>99.35</td>
<td>98.88</td>
</tr>
<tr>
<td>4-22</td>
<td>97.88</td>
<td>99.49</td>
</tr>
<tr>
<td>COMBINED</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>(EXISTING)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMBINED</td>
<td>99.99</td>
<td>99.99</td>
</tr>
<tr>
<td>(WITHOUT 4-22)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources:
NOAA, National Weather Service
Location of observation equipment: Baltimore, MD
Period: 1984 – 2003, 20 consecutive years
Data obtained from Earth Info, Inc., Denver, CO
As provided by the National Climatic Data Center, Asheville, NC
Number of observations: 175,320

4. **Near-Term and Future Approach Procedure Requirements**

Based on the ALP’s proposed development, there will be several new near-term and future approach procedure requirements. During the In-Progress Phase, there will be a 700-foot threshold displacement of Runway 28 which will shift the approach surface to the west by an additional 200 feet. In Phase 2, Runway 33L will be extended 1,000 feet which will shift the approach surface to the southeast by 1,000 feet. In addition to these shifts, there will be new approaches implemented for future Runway 10R-28L (Phase 3). It is proposed that both runway ends have VOR, GPS, and CAT II ILS approaches with ½ mile visibility. Since both runway ends will have precision approaches, the applicable approach surface dimensions include a length of 50,000'; inner width of 1,000'; outer width of 16,000'; and approach slope of 50:1 for the first 10,000' and 40:1 for the remaining 40,000'.

5. **Modifications of Standards**

Modifications of Standards are described in FAA Order 5300.1F, *Modifications to Agency Airport Design, Construction, and Equipment Standards*. According to the Order, “Modifications to standards means any change to FAA standards, other than dimensional standards for runway safety areas, applicable to an airport design, construction, or equipment procurement project that results in lower costs, greater efficiency, or is necessary to accommodate an unusual local condition on a specific project, when adopted on a case-by-case basis.” Requests for Modifications of Standards are submitted to the appropriate FAA Airports Regional or District Offices and are approved by either Regional Division Managers or Headquarters, based on the specific requests. The following table shows all Modifications of Standards for BWI Marshall.
Table 9: Modifications of Design Standards

<table>
<thead>
<tr>
<th>NO</th>
<th>DESCRIPTION</th>
<th>FAA STANDARDS</th>
<th>EXISTING CONDITIONS</th>
<th>PROPOSED ACTION</th>
<th>DATE APPROVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>T/W B (FUTURE) & T/W S, NEAR T/W N: SLOPE ON INTERIM RON APRON</td>
<td>1.0 % MAX SLOPE ON AIRCRAFT APRONS</td>
<td>1.1 % SLOPE</td>
<td>TEMPORARY RON APRON TO BE CONVERTED TO A T/W IN PHASE 2</td>
<td>6/10/2002</td>
</tr>
<tr>
<td>18</td>
<td>R/W 15L-33R TO HELIPAD SEPARATION</td>
<td>500’ CL TO CL</td>
<td>485’ SEPARATION</td>
<td>TO BE RELOCATED IN PHASE 1</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>R/W 28: 500 GAL FUEL TANK IN RPZ</td>
<td>NO FUEL STORAGE IN RPZ</td>
<td>FAA EMERGENCY GENERATOR FUEL TANK WITHIN RPZ</td>
<td>TO BE RELOCATED</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>T/W FILET AT T/W F</td>
<td>GROUP III: 50’W, 100’ CL RADIUS, 55’ FILLET</td>
<td>50’ W, 75’ CL RADIUS, 60’ FILLET</td>
<td>TO BE WIDENED IN PHASE 2</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>R/W 10-28 TO T/W R SEPARATION = 400’</td>
<td>502’</td>
<td>400’</td>
<td>TO BE RELOCATED IN PHASE 1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R/W 10-28: PROFILE LINE-OF-SIGHT</td>
<td>R/W PROFILE LOS - 5’ ABOVE R/2</td>
<td>LOS RESTRICTED IN EASTERN 2,400’, & 1,000’ SECTION WEST OF R/W 4-22</td>
<td>FULL PARALLEL T/W IN PHASE 1; MOS REQUESTED</td>
<td>9/28/2010</td>
</tr>
<tr>
<td>15</td>
<td>TEMPORARY RON APRON; T/W B & T/W S: CL GRADE DIFFERENCE</td>
<td>1.5 % MAX</td>
<td>1.8 %</td>
<td>CONNECTING T/W NOT REQUIRED; MOS REQUESTED</td>
<td>9/28/2010</td>
</tr>
<tr>
<td>16</td>
<td>T/W S NEAR T/W N: T/W OFA</td>
<td>TOFA CLEAR OF PENETRATIONS</td>
<td>SLIGHT GROUND PENETRATION</td>
<td>MOS REQUESTED</td>
<td>9/28/2010</td>
</tr>
<tr>
<td>23</td>
<td>T/W A & T/W P CENTERLINE SEPARATION</td>
<td>GROUP V SEPARATION = 267’</td>
<td>245’ (GROUP IV TO GROUP V)</td>
<td>MOS REQUESTED</td>
<td>9/28/2010</td>
</tr>
<tr>
<td>24</td>
<td>T/W A & T/W P: CL GRADE DIFFERENCE</td>
<td>1.5 % MAX</td>
<td>4.24 %</td>
<td>CONNECTING T/W NOT REQUIRED; MOS REQUESTED</td>
<td>9/28/2010</td>
</tr>
<tr>
<td>25</td>
<td>T/W P OFA OF 125’ (MIN)</td>
<td>160’ TOFA</td>
<td>GROUND PENETRATION OF TOFA</td>
<td>MOS REQUESTED</td>
<td>9/28/2010</td>
</tr>
<tr>
<td>26</td>
<td>CONCOURSE A&B: APRON GRADE ADJACENT TO BUILDING</td>
<td>1.0 % MAX GRADE</td>
<td>5.0 % MAX IN GSE AREA ONLY, ALL GRADES IN AIRCRAFT AREA MEET STANDARDS</td>
<td>MOS REQUESTED</td>
<td>9/28/2010</td>
</tr>
<tr>
<td>27</td>
<td>T/W A & P INTERSECTIONS WITH T/W’S F & H: T/W RADIUS</td>
<td>150’ RADIUS</td>
<td>122.5’ RADIUS TO ALLOW CENTERLINE TRACKING FOR 180 DEGREE TURN</td>
<td>ADEQUATE SAFETY MARGIN PROVIDED PER STANDARD; MOS REQUESTED</td>
<td>9/28/2010</td>
</tr>
<tr>
<td>A</td>
<td>R/W 10-28 CL LIGHTS</td>
<td>CL LIGHTS OFFSET 2.5’</td>
<td>3.5’</td>
<td>MOS REQUESTED</td>
<td>8/7/2012</td>
</tr>
<tr>
<td>C</td>
<td>R/W 10-28/ T/W P SEPARATION</td>
<td>502’</td>
<td>400’</td>
<td>T/W’S U AND R TO BE RELOCATED TO 502’, T/W P TO REMAIN AT 400’; MOS REQUESTED</td>
<td>9/28/2010</td>
</tr>
<tr>
<td>D</td>
<td>R/W 15R-33L/ T/W P SEPARATION</td>
<td>502’</td>
<td>399’</td>
<td>TO BE RELOCATED TO 402’; MOS REQUESTED</td>
<td>9/28/2010</td>
</tr>
<tr>
<td>E</td>
<td>T/W B & T/W S: CL GRADE DIFFERENCE</td>
<td>1.5 % MAX</td>
<td>2.8 %</td>
<td>CONNECTING T/W NOT REQUIRED; MOS REQUESTED</td>
<td>9/28/2010</td>
</tr>
<tr>
<td>F</td>
<td>TEMPORARY LEAD-OFF LINE MARKING FROM R/W 10 TO R/W 4</td>
<td>USE OF RUNWAY AS TAXIWAY NOT RECOMMENDED</td>
<td>R/W 4-22 IS USED AS T/W</td>
<td>INSTALL TEMPORARY T/W LEAD-OFF LINES FROM R/W 10 TO R/W 4; MOS REQUESTED (MAY 2011)</td>
<td>RETIRED 8/6/14</td>
</tr>
<tr>
<td>G</td>
<td>USE OF RUNWAY AS A TAXIWAY</td>
<td>USE OF RUNWAY AS TAXIWAY NOT RECOMMENDED</td>
<td>R/W 4-22 IS USED AS T/W</td>
<td>USE OF R/W 4 AS EXIT T/W FOR R/W 15R; MOS REQUESTED (SEP 2011)</td>
<td>RETIRED 8/6/14</td>
</tr>
<tr>
<td>H</td>
<td>R/W 15L GLIDE SLOPE SITING</td>
<td>UNLESS DEEMED BY FAA TO BE FIXED-BY-FUNCTION, NAVNAIDS NOT PERMITTED IN ROFA</td>
<td>15L GLIDE SLOPE LOCATED IN ROFA</td>
<td>TO BE RELOCATED IN PHASE 3</td>
<td>CANCELED 10/16/2014</td>
</tr>
<tr>
<td>I</td>
<td>R/W 33R GLIDE SLOPE SITING</td>
<td>UNLESS DEEMED BY FAA TO BE FIXED-BY-FUNCTION, NAVNAIDS NOT PERMITTED IN ROFA</td>
<td>33R GLIDE SLOPE LOCATED IN ROFA</td>
<td>TO BE RELOCATED IN PHASE 3</td>
<td>CANCELED 10/16/2014</td>
</tr>
<tr>
<td>J</td>
<td>R/W 15R-33L LINE-OF-SIGHT (LOS)</td>
<td>ANY TWO POINTS 5’ ABOVE R/W CL SHOULD BE MUTUALLY VISIBLE THE ENTIRE LENGTH OF R/W</td>
<td>R/W PROFILE HAS HIGH POINT IN MIDDLE WHICH LIMITS LOS TO LESS THAN 1/3 R/W LENGTH ON SOUTH END</td>
<td>MOS REQUESTED</td>
<td>11/9/2011</td>
</tr>
<tr>
<td>K</td>
<td>R/W 33L BLAST PAD DIMENSIONS</td>
<td>GROUP V DIMENSIONS = 400’ LONG BY 220’ WIDE</td>
<td>200’ LONG BY 220’ WIDE</td>
<td>TEMPORARY MOS REQUESTED (FEB 2013)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: NUMBERING SYSTEM IS BASED ON PREVIOUS APPROVED ALP DATED FEBRUARY 2011

Source: ALP Set – Data Sheet, January 2015
6. Declared Distances

According to FAA AC 150/5300-13A, “declared distances represent the maximum distances available and suitable for meeting takeoff, rejected takeoff, and landing distances performance requirements for turbine powered aircraft.” Declared distances can be implemented at an airport for a number of reasons, such as obtaining additional Runway Safety Area (RSA), Runway Object Free Area (ROFA), and/or Runway Protection Zone (RPZ) lengths prior to or after the runway’s threshold.

There are four distances associated with declared distances: Takeoff Run Available (TORA), Takeoff Distance Available (TODA), Accelerate-Stop Distance Available (ASDA), and Landing Distance Available (LDA). FAA AC 150/5300-13A defines those distances as the following:

- **TORA** – the runway length declared available and suitable for the ground run of an aircraft taking off
- **TODA** – the TORA plus the length of any remaining runway or clearway beyond the far end of the TORA; the full length of TODA may need to be reduced because of obstacles in the departure area
- **ASDA** – the runway plus stopway length declared available and suitable for the acceleration and deceleration of an aircraft aborting a takeoff
- **LDA** – the runway length declared available and suitable for landing an aircraft

Existing declared distances for BWI Marshall are listed below. Both Runways 10 and 28 have reductions in LDA due to obstructions.

<table>
<thead>
<tr>
<th>RUNWAY</th>
<th>TORA</th>
<th>TODA</th>
<th>ASDA</th>
<th>LDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>DECOMMISSIONED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10,502</td>
<td>10,502</td>
<td>10,502</td>
<td>9,952</td>
</tr>
<tr>
<td>28</td>
<td>10,502</td>
<td>10,502</td>
<td>10,502</td>
<td>10,002</td>
</tr>
<tr>
<td>15L</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>33R</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>15R</td>
<td>9,500</td>
<td>9,500</td>
<td>8,600</td>
<td>8,300</td>
</tr>
<tr>
<td>33L</td>
<td>9,500</td>
<td>9,500</td>
<td>8,800</td>
<td>8,300</td>
</tr>
</tbody>
</table>

Source: ALP Set – Data Sheet, January 2015
Declared distances for the In-Progress Phase (2014-2015) are listed below. Declared distances for Runways 10, 15L, and 33R remain unchanged. Runway 28's LDA will be reduced by 200 feet due to the proposed 700-foot threshold displacement. Runways 15R and 33L declared distances were reduced during the RSA compliance projects.

Table 11: In-Progress (2014-2015) Declared Distances

<table>
<thead>
<tr>
<th>RUNWAY</th>
<th>TORA</th>
<th>TODA</th>
<th>ASDA</th>
<th>LDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10,502</td>
<td>10,502</td>
<td>10,502</td>
<td>9,952</td>
</tr>
<tr>
<td>28</td>
<td>10,502</td>
<td>10,502</td>
<td>10,502</td>
<td>9,802</td>
</tr>
<tr>
<td>15L</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>33R</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>15R</td>
<td>9,500</td>
<td>9,500</td>
<td>8,600</td>
<td>8,300</td>
</tr>
<tr>
<td>33L</td>
<td>9,500</td>
<td>9,500</td>
<td>8,800</td>
<td>8,300</td>
</tr>
</tbody>
</table>

Source: ALP Set – Data Sheet, January 2015

Declared distances for Phase 1 (2016–2020) are listed below. There are no changes from the In-Progress phase.

Table 12: Phase 1 (2016-2020) Declared Distances

<table>
<thead>
<tr>
<th>RUNWAY</th>
<th>TORA</th>
<th>TODA</th>
<th>ASDA</th>
<th>LDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10,502</td>
<td>10,502</td>
<td>10,502</td>
<td>9,952</td>
</tr>
<tr>
<td>28</td>
<td>10,502</td>
<td>10,502</td>
<td>10,502</td>
<td>9,802</td>
</tr>
<tr>
<td>15L</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>33R</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>15R</td>
<td>9,500</td>
<td>9,500</td>
<td>8,600</td>
<td>8,300</td>
</tr>
<tr>
<td>33L</td>
<td>9,500</td>
<td>9,500</td>
<td>8,800</td>
<td>8,300</td>
</tr>
</tbody>
</table>

Source: ALP Set – Data Sheet, January 2015

Declared distances for Phase 2 (2021 – 2025) are listed below. Declared distances for Runways 10, 28, 15L, and 33R remain the same from Phase 1 through Phase 2. All declared distances for Runway 15R and 33L increase due to a runway extension at the 33L end.
Table 13: Phase 2 (2021-2025) Declared Distances

<table>
<thead>
<tr>
<th>RUNWAY</th>
<th>TORA</th>
<th>TODA</th>
<th>ASDA</th>
<th>LDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10,502</td>
<td>10,502</td>
<td>10,502</td>
<td>9,952</td>
</tr>
<tr>
<td>28</td>
<td>10,502</td>
<td>10,502</td>
<td>10,502</td>
<td>9,802</td>
</tr>
<tr>
<td>15L</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>33R</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>15R</td>
<td>10,500</td>
<td>10,500</td>
<td>10,500</td>
<td>10,200</td>
</tr>
<tr>
<td>33L</td>
<td>10,500</td>
<td>10,500</td>
<td>9,800</td>
<td>9,800</td>
</tr>
</tbody>
</table>

Source: ALP Set – Data Sheet, January 2015

Declared distances for Phase 3 (2026 – Ultimate) are listed below. Declared distances for Runways 10, 28, 15L, 33R, 15R, and 33L remain the same from Phase 2 through Phase 3. Future Runway 10R-28L will have a length of 9,000 feet and the only decreased distance is the LDA for Runway 10R due to controlling objects to the west of the approach.

Table 14: Phase 3 (2026-Ultimate) Declared Distances

<table>
<thead>
<tr>
<th>RUNWAY</th>
<th>TORA</th>
<th>TODA</th>
<th>ASDA</th>
<th>LDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10L</td>
<td>10,502</td>
<td>10,502</td>
<td>10,502</td>
<td>9,952</td>
</tr>
<tr>
<td>28R</td>
<td>10,502</td>
<td>10,502</td>
<td>10,502</td>
<td>9,802</td>
</tr>
<tr>
<td>FUTURE 10R</td>
<td>9,000</td>
<td>9,000</td>
<td>9,000</td>
<td>8,500</td>
</tr>
<tr>
<td>FUTURE 28L</td>
<td>9,000</td>
<td>9,000</td>
<td>9,000</td>
<td>9,000</td>
</tr>
<tr>
<td>15L</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>33R</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>15R</td>
<td>10,500</td>
<td>10,500</td>
<td>10,500</td>
<td>10,200</td>
</tr>
<tr>
<td>33L</td>
<td>10,500</td>
<td>10,500</td>
<td>9,800</td>
<td>9,800</td>
</tr>
</tbody>
</table>

Source: ALP Set – Data Sheet, January 2015

7. Development Summary

7.1. Development Projects Completed Since Last ALP (February 2011)

A significant amount of construction has been completed at BWI Marshall Airport since the last ALP dated February 2011. Each improvement completed is separated below by area (Airside, Terminal, and Landside) of the Airport.
7.1.1. Airside

The majority of the improvements on the airside are directly related to the RSA program, pavement rehabilitation, and FAA standards compliance improvements. The following projects were completed since the last ALP update:

Runway 10-28 (Including Runway 15R-33L Intersection)

The focus of this project was on the Runway 10-28/15R-33L intersection and Runway 10-28 improvements. Both areas included a pavement rehabilitation and reduction in width for Runway 10-28 from 200 to 150 feet in accordance with FAA standards. The existing runway had 12-foot non-standard shoulders. These shoulders and the remaining runway pavement were converted to 35-foot shoulders in accordance with FAA standards. In addition, the fillet geometry was corrected to meet FAA standards for most of the connecting taxiways. Surface grading in the RSA areas at each runway end of 10-28 to comply with FAA standards was included in this project. The localizer for the Runway 28 approach was also relocated outside of the RSA.

Runway 15R-33L Improvements

The Runway 15R-33L program has been initiated with construction efforts and the primary earthwork associated with the improvements on each runway end recently completed. The runway improvements, including safety area, pavement rehabilitations, and standards, is near completion with a reopening in November 2014.

The Runway 15R-33L Improvements Project addressed all RSA deficiencies and most non-standard design conditions, rehabilitated runway/taxiway pavement, and relocated NAVAIDs. Specifically, RSA and standards improvements projects included the following: RSA grading, installation of frangible couplings on fixed-by-function objects, removal of non-standard objects within the RSA/ROFA, displacement of the 15R and 33L landing thresholds, a 3-foot shift of the Runway 15R-33L centerline, NAVAID relocation/replacement (localizers, glide slopes, ALS, PAPIs, RVR), and relocated/new section of perimeter road at Runway 33L. To ensure land use compatibility, easements will be secured for off-airport property located within the Runway 15R and 33L RPZs, and a portion of MAA's Flight Kitchen facility will be demolished.

During the Runway 15R-33L project, the runway surface was milled and overlaid with asphalt (3 to 15 inches), runway shoulders were widened to 35 feet, centerline and edge lights were replaced, and adjoining taxiway fillets have been widened to Taxiway Design Group (TDG) 6 standards. In conjunction with the Runway 15R-33L RSA project, existing Taxiway T was demolished and Taxiway R was relocated. This includes the construction of the new stub Taxiway R between Runway 15R-33L and Taxiway P, as well as the segment from Runway 15R-33L to existing Taxiway R. Finally, Taxiway R, between Taxiway P and R1, and a portion of decommissioned Runway 4-22 (future Taxiway P) between Runways 10-28 and 15R-33L have been demolished.
Runway 15L-33R Improvements

Most of the improvements associated with the Runway 15L-33R RSA project have been completed. Construction efforts in 2013 included earthwork and grading within the RSA, perimeter road relocation, site preparation for localizer relocation, and RPZ reduction.

Taxiway Romeo (R) Improvements

Taxiway R between Runway 15R-33L and Taxiway Papa (P) was shifted to the north and perpendicular to Runway 15R-33L in order to meet EB-75 (now included in the AC 150/5300-13A) and Runway 15R safety area requirements.

Taxiway Foxtrot (F) Shoulders

Shoulders were constructed for Taxiway F to comply with AC 150/5300-13A (EB-75) and Runway 15R safety area requirements.

Runway 4-22 Decommissioned

Runway 4-22 was decommissioned and is currently being used as a taxiway creating a dual taxiway system that will be converted permanently for the east side of the terminal apron.

Taxiway Papa (P) at Taxiway Bravo (B) Renamed Taxiway Tango (T)

In order to have consistency with other taxiway designations, Taxiway P at Taxiway B was renamed Taxiway T.

7.1.2. Terminal

Terminal improvements were focused on capacity needs based on forecasts of passenger distribution in the terminal as well as project growth and operational requirements. Projects completed since the last ALP include the following:

Concourse B/C Connector Improvements

This project focused on the expansion of the Terminal between Concourses B and C associated with improvements required for security checkpoints, baggage makeup, and life safety code compliance along with the need for a secure connection between Concourses B and C. The project included a widening of Concourse C to enlarge the holdrooms and widening of the egress pathway to meet the latest life safety code.
7.1.3. Landside

Landside improvements mostly focused on the roadways surrounding the Terminal.

7.2. Approved ALP/Environmental Finding/Construction-In-Progress

The Approved ALP/Environmental Finding/Construction-In-Progress Phase includes short-term development projects that are proposed to occur between the present and 2016. These projects were included in the 2011 ALP and 2012 Environmental Assessment, or subsequent pen-and-ink submittals that are not yet constructed or commissioned. Outstanding projects from the 2011 or pen-and-ink ALPs are highlighted below by projected year of completion.

7.2.1. 2015 Projects

Runway 15R-33L Improvements

In conjunction with the Runway 15R-33L RSA project, Taxiway D is being relocated per separation standards, and FAA EB-75-related improvements have been implemented including new Taxiway D3. A new aircraft hold pad is also under construction at the end of Runway 33L. Additionally, to ensure land use compatibility, easements will be secured for off-airport property located within the Runway 15R and 33L RPZs, and a portion of MAA’s Flight Kitchen facility will be demolished.

Runway 15L-33R Improvements

Runway 15L and 33R localizers will be relocated outside of the associated critical area, frangible couplings will be installed on fixed-by-function objects, and non-standard objects will be removed from the RSA/ROFA. Easements will be secured for off-airport property located within the Runway 15L RPZ to ensure land use compatibility.

Runway 10-28 Improvements (as part of Airfield Standards and Pavement Rehabilitation Project)

Runway 10-28 NAVAIDs (glide slopes, PAPIs, ALS, and RVRs) will be relocated and/or replaced, frangible couplings will be installed on fixed-by-function objects, and non-standard objects will be removed from the RSA/ROFA. New Taxiways D, U1, and U2 will be constructed in concrete to tie into Runway 10-28. Taxiway U will be relocated per FAA separation standards and reconstructed in concrete.

Concourse D-E Connector

Improvements will include a secure connector between Concourses D and E and a consolidated passenger security checkpoint. The improved facility will enhance life safety code compliance and provide the capability for two existing domestic gates to serve international traffic.
Taxiway Uniform (U) Relocation

Taxiway U will be relocated 102 feet to the north to comply with runway-taxiway centerline separation standards (502 feet) for ADG V aircraft. Existing Taxiway U and Taxiway P1 will be demolished and Taxiways U1 and U2 will be relocated and reconfigured to comply with EB-75.

International Terminal Bag Screening Improvements

Concourse E will be expanded by 9,000 square feet to enhance the Checked Baggage Inspection System (CBIS) and provide for anticipated growth of international traffic. The CBIS will be modified to achieve efficient bag screening that will improve capacity and optimize conditions for worker safety. The screening improvements will incorporate a fully in-line system within an environmentally enclosed CBIS area.

Airfield Standards and Pavement Rehabilitation Project

Under the Airfield Standards and Pavement Rehabilitation Project (ASPRP), decommissioned Runway 4-22 will be converted to a permanent ADG V taxiway (P) with standard shoulders. All intersecting taxiways along Future Taxiway P will be improved to include standard shoulders and TDG 6 fillets. Taxiway demolitions are also proposed during the ASPRP.

Sheraton Four Points Demolition

The hotel demolition will consist of removal of the hotel building structures and the outdoor swimming pool followed by grading and seeding of the disturbed areas. The existing paved roadways and parking areas serving the hotel site will remain. A perimeter security fence with appropriate fire rescue vehicle access will be installed on the site.

Hotel Construction, Hourly Garage Expansion, & Sky Bridge E

A four-star hotel is proposed in the terminal area at BWI Marshall, adjacent to the Hourly Garage. The facility will accommodate roughly 250 rooms and amenities such as conference rooms and a business center. The hotel development will include new Sky Bridge E that will connect the hotel to the Hourly Garage. BWI Marshall passengers/visitors will be able to access the terminal via existing Sky Bridges A, B and D, and newly constructed Sky Bridge E. In order to segregate vehicle traffic associated with the proposed hotel, vehicular access in the vicinity of the hotel and Hourly Garage will ultimately need to be modified. Hotel-related access projects include reconfiguration of the roadway for service vehicle access, improving hotel patron egress, constructing an additional lane for hotel/garage access, and closing the existing employee access roadway. In addition, I-195 outbound lanes will need to be widened. An additional Hourly Garage will be constructed north of the proposed hotel site to meet demand projections.
7.3. Phase 1 (2016 – 2020)

The Phase 1 (2016–2020) development projects shown on the 2015 ALP focus on capacity and operational improvements based on the projected operational demand. Phase 1 development is separated into 5 main groups – Airfield and Airside Improvements, Terminal Enhancements, Landside Improvements, General Aviation/Hangar Improvements, and Support Facilities.

In addition to the unconstructed projects from the 2011 and pen-and-ink ALPs, Phase 1 of the 2015 ALP is representative of short term development that will satisfy existing needs and correct existing problems. Full descriptions of Phase 1 projects include project descriptions, project justifications, alternatives considered, design standards, navigational aids, ATCT considerations, FAR Part 77, and the project schedules.

7.3.1. Airfield and Airside Improvements

Relocate Taxiways Romeo (R) and Foxtrot (F)

Project Description

Portions of the parallel taxiway system to Runway 10-28 will be demolished and reconstructed at a separation distance of 502 feet from the Runway 10-28 centerline. This project shifts Taxiway R 102 feet from its current location to meet FAA design standards for runway/taxiway separation. In conjunction with the Taxiway R reconstruction, Taxiway R1, and Taxiway G will be rebuilt to connect Runway 10-28 to the new section of Taxiway R. Taxiway G will be narrowed to minimize the risk of incursions and eliminate excessive pavement.

This project also includes demolishing and reconstructing Taxiway Foxtrot (F) between Runway 15R-33L and the Runway 10 end. In addition, the stub Taxiway F between Taxiways Papa (P) and Alpha (A) will be relocated 500 feet north to comply with EB-75, which eliminates the direct access from the Terminal A/B apron to Runway 15R-33L. Newly constructed Taxiway F will create a dual taxiway system along with Taxiway R to the Runway 10 end. New Taxiway F will proceed southeast from Runway 15R-33L and then run parallel to Runway 10-28 at a separation distance of 852 feet from the Runway 10-28 centerline, which is 350 feet from the Taxiway R centerline. Any existing Taxiway F connector pavement no longer needed for shoulder will be demolished.
Project Justification
The reconstruction of Taxiway R at a 502-foot separation from the Runway 10-28 centerline is needed to meet FAA design standards for an Airplane Design Group (ADG or Group) V runway having a Category II/III approach per Advisory Circular (AC) 150/5300-13A. Along the new section of Taxiway R, connecting taxiways will either be reconstructed or demolished to improve the overall efficiency of the airfield. The relocation of Taxiway F at a 350-foot separation from parallel Taxiway R provides for a dual taxiway system to access Runway 10-28 which will improve the overall efficiency of the airfield.

Alternatives Considered
During the Master Plan process, multiple alternatives to mitigate non-conforming runway to taxiway separations were considered. Refer to the 2011 Master Plan Alternatives Chapter (Volume II) for complete technical analysis and graphical representation of the alternatives considered.

Multiple alternatives to relocate Taxiway F were considered. One alternative would relocate the taxiway stub between Runway 15R-33L and Taxiway P to the northwest by 500 feet, and leave the stub between Taxiways T and P in its current location. This taxiway stub configuration would require that aircraft arriving on Runway 33L make a 180 degree turn onto Taxiway P and then an immediate left turn onto the existing Taxiway F stub to access the apron. This circuitous taxi route is counter to the benefits of a single direction exit taxi route offered by the selected alternative. The same circuitous route would be required to taxi from the terminal apron via the relocated Taxiway F to Runway 10. Overall, this option was not favorable due to the resulting inefficient taxi routes that it would create. Another alternative included shifting the entire Phase 1 Taxiway F segment, from Taxiway P to Taxiway G, to the northwest to offset it from the stub between Taxiways P and A. This option would move Taxiway F closer to the environmentally sensitive areas associated with Kitten Branch, and was dismissed on environmental grounds.
Design Standards
The proposed Runway 10-28 taxiway system improvement project will meet AC 150/5300-13A design standards by providing 502 feet of separation between the centerline of Runway 10-28 and Taxiway R, 852 feet of separation between the centerline of Runway 10-28 and Taxiway F, and 350 feet of separation between the centerlines of Taxiways R and F. With the reconstruction of Taxiway R, a portion of Taxiway F will be removed to ensure that 502 feet of separation is provided along Taxiway R from the intersection of Runway 15R-33L to the end of Runway 10. The remaining connecting taxiways along the new section of Taxiway F will be rebuilt to meet design standards.

Navigational Aids
The Runway 10-28 Taxiways R and F improvement project will not affect or require the relocation of any navigational aids.

ATCT Considerations
The proposed Runway 10-28 Taxiways R and F improvement project will not impede the visibility of airfield operational and runway approach areas from the existing ATCT. Preliminary line-of-sight analyses for the proposed ATCT Site 2A determined that tree removal will be required to maintain visibility to Taxiways F and R and the Runway 10 threshold, depending on the phasing and sequencing of the new ATCT and other projects. A total of 16.4 acres of tree removal / trimming may be necessary, of which 9.3 acres is proposed to be cleared for construction of the Phase 1 Aircraft Maintenance Facility project (P11) by 2020. The majority of the remaining 7.1 acres of trees located east of the P11 project site and Taxiway W is proposed for obstruction removal action under the Obstruction Removal project (See Section 3.7), and a more detailed obstruction analysis will be required to determine the extent of additional action that may be necessary to achieve clear line-of-sight from proposed ATCT Site 2A.

Federal Aviation Regulations (FAR) Part 77
Aircraft operating on the new taxiway system will exceed FAR Part 77 transitional surfaces. However, such penetrations are permissible since the penetrations will result from aircraft transitioning through the area.

Project Schedule
Based on the current condition of the existing Taxiway R pavement, construction is anticipated to occur during the 2016 construction season.
Taxiway Uniform (U) 3 - Phase 1

Project Description
Taxiway U was previously approved to be relocated from its current separation of 400 feet from the Runway 10-28 centerline to the FAA standard separation of 502 feet. A new taxiway (U3), located west of Taxiway U2 will be constructed after the Taxiway U relocation project. Taxiway U3 will provide access to/from Runway 10-28 and Taxiway U. This will allow for clear direction to pilots exiting from a Runway 10 arrival or departing from the Runway 28 end. Taxiway U3 will be constructed in concrete based on the prevalence of queuing, slow-moving aircraft. Phase 1 of Taxiway U3 construction includes the area north of Runway 10-28. Phase 2 continues Taxiway U3 south of Runway 10-28 and connects to Taxiway D.

Figure 2: Taxiway Uniform (U) 3 Construction – Phase 1

Project Justification
The Master Plan Needs Assessment (Technical Report, Volume II) outlines current and projected utilization and delay characteristics for this section of taxiway. The existing pavement connectors have experienced degradation and were identified in the Pavement Management Plan (PMP) to need rehabilitation. The additional exit taxiway, Taxiway U3, was positioned to reduce runway occupancy times during Runway 10 arrivals. Taxiway replacement in concrete should alleviate any pavement degradation created by current and future operations.
Alternatives Considered
A high speed exit taxiway was considered but would require greater separation between the runway centerline and taxiway to meet FAA standards.

Design Standards
The taxiway connector will meet current FAA design standards per AC 150/5300-13A.

Navigational Aids
Taxiway U3 will need a separate study to confirm that the Very High Frequency Omni-Directional Range (VOR) function is not impacted as the taxiway is located in the critical area.

ATCT Considerations
The planned taxiway connectors will not impact the visibility of the existing or future ATCT facility.

FAR Part 77
The taxiway pavement in this project is not anticipated to affect FAR Part 77 surfaces.

Project Schedule
The proposed project is scheduled to be under construction by 2018.

International Terminal Area Taxiway Fillets/Shoulders

Project Description
As a result of the recent revisions to FAA standards for fillet geometry, the Terminal Area pavement projects include improvements to all substandard fillets to meet the latest criteria. Locations include the taxiways adjacent to Runway 15L-33R and the adjacent terminal area. Several of these areas were also identified to be in need of pavement rehabilitation in accordance with the PMP. In addition, the temporary remain-overnight (RON) area adjacent to the International concourse will be converted to a taxiway as part of the miscellaneous projects. This conversion will extend Taxiway B and maintain the 275-foot separation that exists today between Taxiways B and S. All FAA standards will be met as part of the conversion to include shoulders and standard fillets for the connections to Taxiways N and JJ. Completion of this improvement will eliminate a Modification of Standard (MOS) and provide for a parallel taxiway system west of Runway 15L-33R.
Project Justification
Widening fillets/shoulders to standard dimensions will improve maneuverability and accessibility of larger aircraft in the vicinity of International Concourse E. When the temporary RON area on Future Taxiway B is eliminated the taxiway-taxiway centerline separation between Taxiways B and S will be less than 267 feet. Providing a consistent separation of 275 feet between future Taxiway B and Taxiway S will eliminate an existing Modification of Airport Design Standards (MOS) and the need for a future MOS.

Alternatives Considered
Maintaining the existing geometry and submitting a new MOS as well as maintaining an existing MOS were the other alternatives considered.

Design Standards
The future taxiway geometry and all fillets/shoulders will meet current FAA design standards per AC 150/5300-13A.

Navigational Aids
The proposed development will not infringe upon any airport navigation systems or associated critical areas. Analysis will need to be performed to confirm that the grading associated with adding the shoulder to Taxiway S will not impact the existing location of the Runway 15L glide slope. If design development indicates a potential impact, the shoulder and subsequent compliance with the FAA standard will be delayed until the glide slope is relocated.
ATCT Considerations
The planned taxiway geometry will be visible from both the existing and proposed ATCT locations.

FAR Part 77
The project is not anticipated to affect FAR Part 77 surfaces.

Project Schedule
The improvement projects are anticipated to be completed in 2016.

New Infill Pavement Near Taxiways T, P, and Future P

Project Description
Subsequent to the Airfield Lighting Vault (ALV) relocation project, infill pavement will be added to the former ALV site and to the grassy area bounded by Taxiways T, P, P1 and C. In conjunction with these infill areas, Taxiway E will be rebuilt approximately 300 feet to the east. The new impervious areas will be paved under Phase 1 in order to support standard Group V parallel taxiway separations and to accommodate a Vehicle Service Roadway (VSR) that will be repositioned closer to the airfield to provide for the necessary aircraft parking clearances at gates around the ends of Concourses C and D. Future Taxiway E will serve to facilitate aircraft movements between the runways and terminal area.

Figure 4: New Infill Pavement Near Taxiways T, P and Future P
Project Justification
The infill pavements proposed in the vicinity of Concourses C and D will provide for standard Airplane Design Group (ADG) V taxiway separation. Additionally, the new pavement will support a VSR that will be positioned further from Concourses C and D in order to maximize the utilization of gates at the end of the concourses. New Taxiway E will ease traffic congestion in the terminal area.

Alternatives Considered
Due to the inability to accomplish the same functions within the same geography, no other alternative, aside from the “no-build” option was considered.

Design Standards
The planned improvements will be designed and constructed to meet FAA design standards.

Navigation Aids
The project is located away from all navigational aid critical areas and will not interfere with any airport navigation systems.

ATCT Considerations
The planned improvements will not affect functions or visibility of the existing or future ATCT facility.

FAR Part 77
Aircraft operating on sections of the new pavement will exceed FAR Part 77 transitional surfaces. However, such penetrations are permissible since the penetrations will result from aircraft transitioning through the area.

Project Schedule
The proposed project is scheduled to be under construction by 2020.

Taxiway Connectors (between Taxiways T-P)

Project Description
After decommissioned Runway 4-22 is converted into a fully compliant ADG V taxiway (Taxiway P) a new taxiway section is proposed to enhance connectivity to/from future Taxiways Papa and Tango.
Figure 5: Taxiway Connectors (between Taxiways T-P)

Project Justification
The Facility Needs Chapter of the 2011 Master Plan (Volume I) outlines current and projected utilization and delay for this section of taxiway. While both East- and West-flow operations generate moderate to high taxiway utilization in this area, West flow operations tend to experience moderate to excessive delays while taxiing along this section. In the later stages of Phase 1, delay levels are anticipated to become more excessive. The proposed taxiway connection in the vicinity of Concourses C and D will improve the efficiencies of movements and reduce periodic taxi delays anticipated along the section of future Taxiway P.

Alternatives Considered
Due to the high demand for access to the Concourse C-D alley, the connector is optimally located and no other alternative, except for the "no-build" option was considered.

Design Standards
The taxiway connection will be designed to meet FAA design standards.

Navigational Aids
The proposed development will not infringe upon any airport navigation systems or associated critical area.

ATCT Considerations
The planned taxiway connectors in the vicinity of Concourses C & D will not affect functions or visibility of the existing or future ATCT facility.
FAR Part 77
The project is not anticipated to affect FAR Part 77.

Project Schedule
The proposed project is scheduled to be under construction by 2020.

Relocate Taxiways Kilo (K) & Lima (L)

Project Description
Taxiways K and L currently provide direct access from the General Aviation (GA) Apron to Runway 15L-33R. These taxiways will be relocated to prevent direct access from the apron to the runway. The locations will be connected to Taxiway Q. During the project, existing Taxiways K and L will be demolished.

Figure 6: Relocate Taxiways Kilo (K) & Lima (L)

Project Justification
FAA AC 150/5300-13A strongly encourages airports to reconfigure taxiway geometry to eliminate taxiways that provide aircraft with direct access from the apron environment to runways. Relocating Taxiways K and L will improve pilot situational awareness and reduce the likelihood of runway incursions by eliminating direct access from the GA apron to Runway 15L-33R.
Alternatives Considered
Other alternatives assessed included the closure of Taxiway K and Taxiway L as well as using one of the existing deicing lanes as a primary access taxilane. The deicing lane alternative was implemented as a temporary solution for Taxiway K.

Design Standards
Both taxiway connections will meet current FAA design standards per AC 150/5300-13A.

Navigational Aids
The proposed development will not infringe upon any airport navigation systems or associated critical areas.

ATCT Considerations
The planned taxiway connectors will be visible from the existing and proposed ATCT.

FAR Part 77
The project is not anticipated to affect FAR Part 77 surfaces.

Project Schedule
The project is proposed to be completed in 2019.

Isolation/RON Apron Construction

Project Description
A portion of the decommissioned Runway 4 end and Taxiway Y will be converted to a parking apron and isolation area for aircraft. The area will include two parking positions to accommodate up to Group V aircraft in each position. The project will require reconfiguration of one of the aircraft rescue and firefighting (ARFF) access roads around the apron area. It will also require installation of a blast fence and the relocation of one of the remote transmitter receiver (RTR) sites.

Additionally, the existing airport beacon may require relocation for construction of the new apron parking and aircraft isolation area. A study will be performed to determine if the beacon can remain as-is, can be elevated at its existing location, or if a new location is required.

The apron parking and isolation area will include access to and from Taxiway D3, which crosses Runway 15R-33L. It will also be developed to connect to the parallel taxiway of Runway 10R-28L in the future (Phase 3).
Project Justification
When arriving aircraft are suspected to be a public safety/security threat it is common airport protocol to direct pilots to remote sites for clearance before granting access to the terminal area. Any suspicious aircraft at BWI Marshall are currently directed to the end of decommissioned Runway 4 for inspection/clearance. After decommissioned Runway 4-22 is converted to a taxiway and associated pavement demolitions occur, access from Runway 10-28 and the terminal area to the end of decommissioned Runway 4 will be limited. The new route to the end of decommissioned Runway 4 will at times require that aircraft taxi on Runway 15R-33L. Developing an Isolation Apron with direct access to future Taxiway D3 will eliminate taxing activity on Runway 15R-33L and provide a remote site dedicated to the investigation of suspicious aircraft. When the apron is not dedicated to isolation activity, it would provide two ADG V aircraft RON positions to fulfill current air carrier demands.

Alternatives Considered
One alternative considered would keep the existing pavement in place and utilize the old runway pavement and Taxiway Y pavement for parking and access. The remaining geometry would not provide enough pavement for multiple Group V aircraft to park and the need for RON parking is mainly for large, (Group V) aircraft. In addition, the existing runway pavement geometry that would be used is not perpendicular to the runway and does not provide the appropriate level of situation awareness for aircraft crossing Runway 15R-33L. Therefore, this alternative was precluded from further review.
Design Standards
All new geometry associated with the isolation area will meet FAA standards including fillets and separation on the apron per AC 150/5300-13A.

Navigational Aids
The proposed development will require relocation of the RTR which is also necessary for the new ATCT facility. The airport beacon may require relocation based on further analysis. Other navigational aids are not anticipated to be impacted.

ATCT Considerations
The planned taxiway and apron will be visible from both the existing and proposed ATCT. An airport beacon study will be done if relocation from the existing site is deemed necessary.

FAR Part 77
The project is not anticipated to affect FAR Part 77 surfaces. The elevation of the aircraft tail heights at the parked positions will be below the transitional surface.

Project Schedule
The project is proposed to be completed in 2019.

Runway 28 Deicing Pad Expansion

Project Description
In order to meet new aircraft deicing separation standards in accordance with AC 150/5300-14B Airport Deicing Facilities, the capacity and number of parking positions on the existing Runway 28 pad will be reduced. BWI Marshall proposes to expand the pad to accommodate the new standard but maintain the existing capacity. As identified in the Master Plan, deicing capacity at the common-use pads is critical to the Airport’s inclement weather operations. This expansion will add an extra lane with possibly two positions for operations. Expansion would include reconstruction of the concrete apron located on the existing pad including reconfiguration of the infrastructure to accommodate the new parking positions per the FAA standard. United Airlines proposes to relocate their deicing operation from the Runway 15R pad to the Runway 28 pad. United’s blending station and a 21,000 gallon glycol tank will be relocated and connected to nearby utilities (electrical and water). Prior to expanding the Runway 28 pad, United will install temporary (mobile) facilities to accommodate their operation at the Runway 28 pad.
Figure 8: Runway 28 Deicing Pad Expansion

Project Justification
The existing deicing pad is not adequately sized to both meet user demand and FAA design standards. The Runway 28 deicing pad expansion will retain the current capacity and enable the Airport to satisfy FAA standards/requirements for deicing pads and associated service vehicles.

Alternatives Considered
Alternatives reviewed included maintaining the same positions with a reduction in lanes or proposing more deicing at parking positions on the apron. BWI Marshall operations require that the deicing positions be maintained to support the predominant flow at the Airport (Runway 28 departures and Runway 33L arrivals). Some of the apron gate locations would exceed holdover times if all deicing was performed at the gates.

Design Standards
All new geometry associated with the deicing pad expansion will meet FAA standards per AC 150/5300-14B and AC 150/5300-13A. Separation and collection infrastructure on the existing pad will be adjusted to meet all FAA standards. Vehicle Safety Zones (VSZ) will be included.

Navigational Aids
Navigational aids will not be impacted by this expansion.
ATCT Considerations
The Runway 28 deicing pad expansion will be visible from both the existing and new ATCT. A line-of-sight analysis was performed from the proposed ATCT. The proposed deicing layout will not result in additional shadows to the line-of-sight to the Runway 28 end.

FAR Part 77
The project is not anticipated to affect FAR Part 77 surfaces. The elevation of the aircraft tail heights at the parked positions will be below the transitional surface.

Project Schedule
The Runway 28 deicing pad expansion work is anticipated to be done in 2018-2019.

Helipad Relocation

Project Description
Per FAA AC 150/5390-2C the standard separation between the centerline of runway approach to the centerline of an approach to a Final Approach and Takeoff Area (FATO) for simultaneous, same direction VFR operations is 500 feet (for large airplane and medium helicopters). The center of the FATO is currently offset 485 feet from the centerline of Runway 15L-33R. The Helipad will be relocated to a new location 500 feet from the centerline of Runway 15L-33R.

During the helipad relocation, the current VSR section that connects the GA Apron to the 15L end perimeter VSR, and apron light poles will be relocated east to eliminate vehicular traffic conflicts with the FATO and approach/departure surface. This VSR section will be relocated adjacent to an existing long-term airport parking lot. Security Checkpoint J (P50) will be relocated next to the future VSR in the northwest corner of an existing long-term parking lot.

Figure 9: Helipad Relocation
Project Justification
The helipad relocation is required to eliminate an existing MOS at BWI Marshall, thus satisfying FAA design standards in FAA AC 150/5390-2C.

Alternatives Considered
The existing and proposed helipad sites are located proximal to the BWI Marshall’s only FBO where all airport helicopter traffic needs are served. Additionally the proposed location is positioned such that helicopter traffic is safely isolated from aircraft utilizing Runway 15L-33R and/or the GA Apron. As few sites in the vicinity of the FBO meet all FAA design and FAR Part 77 criteria for helipads, alternative sites were not considered.

Design Standards
All components of the relocation project will be constructed in compliance with all FAA design standards, including FAA AC’s 150/5300-13A and 150/5390-2C.

Navigational Aids
The proposed development will not infringe upon any airport navigation systems or associated critical areas. The proposed helipad will be sited such that the limits of the future Runway 15L Glide Slope relocation project (Phase 3) and associated Critical Area may be integrated with no impact.

ATCT Considerations
The helipad relocation improvement project will not affect functions or visibility of the existing or future ATCT facility.

FAR Part 77
The future helipad site will not impact FAR Part 77 surfaces for Runway 15L-33R. Further, the future helipad approach/departure surfaces will be free of any objects, including the proposed section of VSR and apron light poles.

Project Schedule
The project is proposed to be completed by 2020.
Obstruction Removal Project

Project Description
FAR Part 77 surfaces were surveyed for all runways at BWI Marshall in 2005 and 2011. Both vegetative and manmade objects that were determined to exceed FAR Part 77 surfaces in 2005 were identified on the Master Plan ALP (February 2011), and have been or are soon to be removed under ongoing construction projects at BWI Marshall. While the 2011 survey confirmed many of the 2005 obstructions to FAR Part 77, additional vegetative and manmade penetrations were identified. Though the obstruction removal efforts at BWI Marshall have been completed, runway approaches have not been resurveyed to verify removed objects. Thus the 2005 and 2011 data points were merged on the draft ALP update. With duplicate objects, 2011 data points were retained and 2005 points were extracted from the data set, the highest elevation of the two objects was applied. The only instance where 2005 points remain is where duplicate manmade objects were not found within the 2011 data set.

All objects from the surveys that exceed FAR Part 77 are illustrated on ALP Sheets 6 and 7. Objects within BWI Marshall’s inner-approaches are partially illustrated below, and on the approach plan/profile sheets (Sheets 10-13). Given the volume of obstructions within the Runway 15L Approach Surface, enlarged views of the Runway 15L approach are also detailed on Sheets 8A-8I. The disposition proposed by the MAA for each obstruction is specifically denoted in the obstruction data tables (Sheets 9A-9G).
Figure 10: Runway 10

Figure 11: Runway 15R

Figure 12: Runway 15L

Figure 13: Runway 28

Figure 14: Runway 33L

Figure 15: Runway 33R
Given the sheer volume of trees in the vicinity of approaches at BWI Marshall, and the inability of the surveys to capture every FAR Part 77 obstruction, the MAA has applied two factors to ensure that the next obstruction removal effort is adequately highlighted in the upcoming Environmental Assessment (EA). First, tree canopies identified on the ALP plan/profile and data sheets represent entire stands of trees that penetrate Part 77. Obstruction data tables do not necessarily reflect all trees within the canopy that penetrate FAR Part 77. Tree clearing beyond that identified in the table and on plans may be required, but will be limited to the defined boundaries of tree canopies/stands. Second, per the analysis performed by HNTB (August 2013), future heights of vegetation were projected via various growth rate methodologies. This action was taken to optimize MAA’s obstacle clearing effort that results in the follow-on EA and to minimize or altogether eliminate the need to clear the same geographic areas in the future. The HNTB analysis assumed the following growth rate factors: 1) where tree species were known, the mature species height was applied, and; 2) where tree species were unknown, a growth rate of 2 feet per year was applied through 2020. The current elevation of vegetative objects is presented in the data tables and the associated penetration values shown are negative. When growth rates are applied to these objects, Part 77 surface penetrations will result and the associated action is to remove or lower the objects by 2020.

The overall strategy to obstruction removal proposed by the MAA is as follows:

- **Non-Airport Property** - Objects which exceed FAR Part 77 are not subject to removal unless they also exceed a 34:1 slope applied to the limits of a Precision Instrument Runway Approach Surface trapezoid. Hence all off-airport trees and manmade objects that exceed the 34:1 approach surface will be removed.

- **Airport-Owned Property** - The MAA will remove or lower all trees and manmade objects that exceed any Primary, Runway Approach (50:1) or Transition (7:1) surface. Where exceptions to each strategy exist they are highlighted in subsequent paragraphs.

In the case of 225 objects located on Non-Airport Property, the proposed action for 223 of the objects is to “Remove or Lower”. Two communication towers (1,437 and 1,504 feet mean seal level (MSL)) roughly 8 miles northwest of Runway 15L do exceed the 34:1 approach surface but will not be removed or lowered because they are tied to FAA aeronautical studies that yielded a “Determination of No Hazard”.

Non-Airport Property - Objects which exceed FAR Part 77 are not subject to removal unless they also exceed a 34:1 slope applied to the limits of a Precision Instrument Runway Approach Surface trapezoid. Hence all off-airport trees and manmade objects that exceed the 34:1 approach surface will be removed.

Airport-Owned Property - The MAA will remove or lower all trees and manmade objects that exceed any Primary, Runway Approach (50:1) or Transition (7:1) surface. Where exceptions to each strategy exist they are highlighted in subsequent paragraphs.

In the case of 225 objects located on Non-Airport Property, the proposed action for 223 of the objects is to “Remove or Lower”. Two communication towers (1,437 and 1,504 feet mean seal level (MSL)) roughly 8 miles northwest of Runway 15L do exceed the 34:1 approach surface but will not be removed or lowered because they are tied to FAA aeronautical studies that yielded a “Determination of No Hazard”.

In the case of 225 objects located on Non-Airport Property, the proposed action for 223 of the objects is to “Remove or Lower”. Two communication towers (1,437 and 1,504 feet mean seal level (MSL)) roughly 8 miles northwest of Runway 15L do exceed the 34:1 approach surface but will not be removed or lowered because they are tied to FAA aeronautical studies that yielded a “Determination of No Hazard”.

In the case of 225 objects located on Non-Airport Property, the proposed action for 223 of the objects is to “Remove or Lower”. Two communication towers (1,437 and 1,504 feet mean seal level (MSL)) roughly 8 miles northwest of Runway 15L do exceed the 34:1 approach surface but will not be removed or lowered because they are tied to FAA aeronautical studies that yielded a “Determination of No Hazard”.
More than 1,000 objects exceed FAR Part 77 surfaces on Airport-Owned Property. The majority of these objects shall be addressed as follows: “Remove or Lower”, “To Be Lowered/Relocated/Removed” (per an ongoing construction project), “Fixed-by-Function” as approved by the FAA in 2012, or already approved Airspace Determinations. Of the remaining objects (see subsequent tables) on Airport-Owned Property which exceed FAR Part 77, the MAA proposes the following actions: “Request Fixed-By-Function”, “Obstruction Lighted”, “Obstruction Light”, “No Action”, and “See Note 7”. The objects which apply to each category are as follows: A total of 60 airfield signs/lights which facilitate navigation or aircraft movement on runways or taxiways at BWI Marshall exceed FAR Part 77. In these instances, the MAA requests that the FAA formally qualify these objects as “Fixed-By-Function”. Five manmade objects (2 Buildings; 1 Security Access Gate; and 2 Windsocks) are currently obstruction lighted, and the MAA proposes to retain these objects. An additional 42 objects (Security/Safety Fence, Light Poles, a Security Guard Booth, Guard Rail, Navigational Aids, and Cargo Ground Support Equipment) are critical to airport security, safety, navigation and/or airport operations. The MAA proposes to “Obstruction Light” these objects and retain them. In 17 instances, the MAA proposes “No Action” for objects such as the ground, security fence, a railroad arm, an obstruction light, and a catenary pole. Finally, where 3 air cannons exceed FAR Part 77, the disposition of “See Note 7” applies. This note is referenced on the ALP and acknowledges the ongoing evaluation by MAA to pursue alternative sites for multiple air cannons. Any proposed alternative location will be coordinated with the FAA.

Project Justification
Obstruction removal is necessary to preserve a safe operating environment and to maintain or enhance existing approach procedures at BWI Marshall. By clearing FAR Part 77 as described, the MAA will be able to at least maintain existing approaches, and potentially improve various approach capability/level of service.

Alternatives Considered
With the exception of the 127 objects previously described, no alternatives to clearing FAR Part 77 were considered either on or off of property owned by the MAA.

Design Standards
During the obstruction removal project, objects will be lowered, relocated, removed, or lighted in accordance with FAA Design Standards and FAR Part 77.

Navigational Aids
During the obstruction removal project, navigational aids will not be impacted by the lowering, relocation, or removal of any object. Where the project requires new navigational aids, all equipment will be sited consistent with siting criteria, and efforts will be coordinated with the FAA in advance of service interruptions and relocation.
ATCT Considerations
The obstruction removal effort will be coordinated with ATCT to ensure minimal impact to air traffic. Objects that are proposed to be relocated will be evaluated to ensure that the new sites will not impact the existing or proposed ATCT line-of-sight.

Federal Aviation Regulations (FAR) Part 77
With the exception of the 127 objects previously described, all objects located on- and off-airport will meet FAR Part 77 criteria. Where objects are relocated or lowered, they will be installed or modified to clear FAR Part 77.

Project Schedule
The proposed project is scheduled to be under construction by 2020.
Table 15: Obstructions

<table>
<thead>
<tr>
<th>#</th>
<th>POINT NAME</th>
<th>DESCRIPTION</th>
<th>OBJECT ELEV</th>
<th>OBJECT PENETRATION</th>
<th>PROPOSED ACTION</th>
<th>SURFACE NAME</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n3694</td>
<td>OL-ON-APPR-LITE</td>
<td>132.6</td>
<td>1.4</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 28 APPR-TRAN</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>2</td>
<td>n3727</td>
<td>OL-ON-APPR-LITE</td>
<td>129.5</td>
<td>0.9</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 28 APPR-TRAN</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>3</td>
<td>n3728</td>
<td>OL-ON-APPR-LITE</td>
<td>129.3</td>
<td>0.1</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 28 APPR-TRAN</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>4</td>
<td>n3732</td>
<td>OL-ON-APPR-LITE</td>
<td>135.4</td>
<td>0.1</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 28 APPR-TRAN</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>5</td>
<td>n3734</td>
<td>OL-ON-APPR-LITE</td>
<td>138.5</td>
<td>0.4</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 28 APPR-TRAN</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>6</td>
<td>n3735</td>
<td>OL-ON-APPR-LITE</td>
<td>142.8</td>
<td>1.3</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 28 APPR-TRAN</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>7</td>
<td>427</td>
<td>SIGN-RUNWAY</td>
<td>139.7</td>
<td>1.4</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>8</td>
<td>1492</td>
<td>SIGN-RUNWAY</td>
<td>143.9</td>
<td>4.3</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>9</td>
<td>2022</td>
<td>SIGN-RUNWAY</td>
<td>144.4</td>
<td>4.3</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>10</td>
<td>2030</td>
<td>SIGN-RUNWAY</td>
<td>144.4</td>
<td>4.3</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>11</td>
<td>2144</td>
<td>SIGN-RUNWAY</td>
<td>145.8</td>
<td>5.3</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>12</td>
<td>2260</td>
<td>SIGN-RUNWAY</td>
<td>144.6</td>
<td>3.6</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>13</td>
<td>2276</td>
<td>SIGN-RUNWAY</td>
<td>143.2</td>
<td>2.4</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>14</td>
<td>2335</td>
<td>SIGN-RUNWAY</td>
<td>142.6</td>
<td>1.7</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>15</td>
<td>2358</td>
<td>SIGN-RUNWAY</td>
<td>144.9</td>
<td>3.2</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>16</td>
<td>2371</td>
<td>SIGN-RUNWAY</td>
<td>144.3</td>
<td>2.5</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>17</td>
<td>2377</td>
<td>SIGN-RUNWAY</td>
<td>143.6</td>
<td>2.1</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>18</td>
<td>2380</td>
<td>SIGN-RUNWAY</td>
<td>144.4</td>
<td>2.6</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>19</td>
<td>2420</td>
<td>SIGN-RUNWAY</td>
<td>145.5</td>
<td>3.8</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>20</td>
<td>2465</td>
<td>SIGN-RUNWAY</td>
<td>143.5</td>
<td>2.0</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>21</td>
<td>2516</td>
<td>SIGN-RUNWAY</td>
<td>144.7</td>
<td>4.0</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>22</td>
<td>2517</td>
<td>SIGN-RUNWAY</td>
<td>143.1</td>
<td>1.6</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>23</td>
<td>2543</td>
<td>SIGN-RUNWAY</td>
<td>142.9</td>
<td>1.1</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>24</td>
<td>2616</td>
<td>SIGN-RUNWAY</td>
<td>142.9</td>
<td>2.2</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>25</td>
<td>2663</td>
<td>SIGN-RUNWAY</td>
<td>141.9</td>
<td>3.1</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>26</td>
<td>2841</td>
<td>SIGN-RUNWAY</td>
<td>137.2</td>
<td>2.1</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>27</td>
<td>2972</td>
<td>SIGN-RUNWAY</td>
<td>137.5</td>
<td>3.5</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>28</td>
<td>3007</td>
<td>SIGN-RUNWAY</td>
<td>144.8</td>
<td>3.5</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>29</td>
<td>3016</td>
<td>SIGN-RUNWAY</td>
<td>144.8</td>
<td>3.5</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>30</td>
<td>3079</td>
<td>SIGN-RUNWAY</td>
<td>135.8</td>
<td>1.9</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>31</td>
<td>3087</td>
<td>SIGN-RUNWAY</td>
<td>143.8</td>
<td>3.0</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>32</td>
<td>3118</td>
<td>SIGN-RUNWAY</td>
<td>140.9</td>
<td>0.3</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>33</td>
<td>3207</td>
<td>SIGN-RUNWAY</td>
<td>132.1</td>
<td>1.1</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>34</td>
<td>3232</td>
<td>NAVAID - RVR</td>
<td>147.2</td>
<td>14.6</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>35</td>
<td>3345</td>
<td>SIGN-RUNWAY</td>
<td>134.9</td>
<td>0.8</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>36</td>
<td>3348</td>
<td>SIGN-RUNWAY</td>
<td>131.4</td>
<td>3.1</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>37</td>
<td>3352</td>
<td>SIGN-RUNWAY</td>
<td>135.4</td>
<td>7.9</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>38</td>
<td>3471</td>
<td>SIGN-RUNWAY</td>
<td>128.8</td>
<td>1.1</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>39</td>
<td>3472</td>
<td>SIGN-RUNWAY</td>
<td>136.4</td>
<td>14.3</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>40</td>
<td>3487</td>
<td>SIGN-RUNWAY</td>
<td>128.1</td>
<td>0.4</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>#</td>
<td>POINT NAME</td>
<td>DESCRIPTION</td>
<td>OBJECT ELEV</td>
<td>OBJECT PENETRATION</td>
<td>PROPOSED ACTION</td>
<td>SURFACE NAME</td>
<td>LOCATION</td>
</tr>
<tr>
<td>----</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>--</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>41</td>
<td>3492</td>
<td>SIGN-TAXIWAY</td>
<td>131</td>
<td>1.4</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>3493</td>
<td>SIGN-TAXIWAY</td>
<td>138.9</td>
<td>19.2</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>3502</td>
<td>SIGN-TAXIWAY</td>
<td>126.5</td>
<td>19.5</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3504</td>
<td>SIGN-RUNWAY</td>
<td>126.2</td>
<td>0.7</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>3522</td>
<td>SIGN-TAXIWAY</td>
<td>135.9</td>
<td>18.1</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>3524</td>
<td>SIGN-TAXIWAY</td>
<td>125.1</td>
<td>0.4</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>3525</td>
<td>SIGN-TAXIWAY</td>
<td>125.9</td>
<td>1</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>3574</td>
<td>SIGN-RUNWAY</td>
<td>117.2</td>
<td>1</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>3579</td>
<td>SIGN-RUNWAY</td>
<td>115.2</td>
<td>0.7</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>3583</td>
<td>SIGN-RUNWAY</td>
<td>116</td>
<td>0.7</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>3584</td>
<td>SIGN-TAXIWAY</td>
<td>120.1</td>
<td>5.9</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>3586</td>
<td>SIGN-TAXIWAY</td>
<td>116.8</td>
<td>2.6</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>3590</td>
<td>SIGN-TAXIWAY</td>
<td>115.8</td>
<td>0.2</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>3596</td>
<td>SIGN-RUNWAY</td>
<td>116.8</td>
<td>2.6</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>3597</td>
<td>SIGN-RUNWAY</td>
<td>115</td>
<td>0.8</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>3613</td>
<td>SIGN-RUNWAY</td>
<td>116</td>
<td>1.8</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>3626</td>
<td>LIGHT-TAXIWAY</td>
<td>130.1</td>
<td>1</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>3689</td>
<td>SIGN-RUNWAY</td>
<td>115.2</td>
<td>1.1</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>3725</td>
<td>SIGN-RUNWAY</td>
<td>115</td>
<td>0.8</td>
<td>REQUEST FIXED BY FUNCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>2582</td>
<td>BUILDING</td>
<td>183.7</td>
<td>21.3</td>
<td>OBSTRUCTION LIGHTED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>2599</td>
<td>CARGO ACCESS GATE</td>
<td>166</td>
<td>2.9</td>
<td>OBSTRUCTION LIGHTED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>2617</td>
<td>BUILDING</td>
<td>181</td>
<td>18.5</td>
<td>OBSTRUCTION LIGHTED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>3367</td>
<td>WINDSOCK</td>
<td>144.4</td>
<td>6.4</td>
<td>OBSTRUCTION LIGHTED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>3582</td>
<td>WINDSOCK</td>
<td>123.8</td>
<td>9.6</td>
<td>OBSTRUCTION LIGHTED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>n1132</td>
<td>FENCE</td>
<td>163.5</td>
<td>2.9</td>
<td>OBSTRUCTION LIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>n1134</td>
<td>FENCE</td>
<td>162.5</td>
<td>1.9</td>
<td>OBSTRUCTION LIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>n0784</td>
<td>POLE-LITE</td>
<td>173.3</td>
<td>16.4</td>
<td>OBSTRUCTION LIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>665</td>
<td>SECURITY FENCE</td>
<td>141.3</td>
<td>1.2</td>
<td>OBSTRUCTION LIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>679</td>
<td>SECURITY FENCE</td>
<td>142.1</td>
<td>2.4</td>
<td>OBSTRUCTION LIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>692</td>
<td>SECURITY FENCE</td>
<td>144.9</td>
<td>1.7</td>
<td>OBSTRUCTION LIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>715</td>
<td>SECURITY FENCE</td>
<td>147.5</td>
<td>1.9</td>
<td>OBSTRUCTION LIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>738</td>
<td>SECURITY FENCE</td>
<td>150.6</td>
<td>2.5</td>
<td>OBSTRUCTION LIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>2539</td>
<td>SECURITY FENCE</td>
<td>161.5</td>
<td>0.1</td>
<td>OBSTRUCTION LIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>2553</td>
<td>POLE-LIGHT</td>
<td>179.2</td>
<td>17.2</td>
<td>OBSTRUCTION LIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>2568</td>
<td>POLE-LIGHT</td>
<td>172.6</td>
<td>12.7</td>
<td>OBSTRUCTION LIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>2592</td>
<td>SECURITY GUARD BOOTH</td>
<td>162.2</td>
<td>4</td>
<td>OBSTRUCTION LIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>2593</td>
<td>POLE-LIGHT</td>
<td>169</td>
<td>10.9</td>
<td>OBSTRUCTION LIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>2595</td>
<td>POLE-LIGHT</td>
<td>169.3</td>
<td>11.4</td>
<td>OBSTRUCTION LIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>2628</td>
<td>MOBILE CARGO CONTAINER</td>
<td>159.7</td>
<td>4.3</td>
<td>OBSTRUCTION LIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>2631</td>
<td>MOBILE CARGO CONTAINER</td>
<td>159.8</td>
<td>4.7</td>
<td>OBSTRUCTION LIGHT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 15: Obstructions (Continued)

<table>
<thead>
<tr>
<th>#</th>
<th>POINT NAME</th>
<th>DESCRIPTION</th>
<th>OBJECT ELEV</th>
<th>OBJECT PENETRATION</th>
<th>PROPOSED ACTION</th>
<th>SURFACE NAME</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>2633</td>
<td>POLE</td>
<td>175.8</td>
<td>9.7</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>82</td>
<td>2660</td>
<td>MOBILE GRND. SUPT.</td>
<td>159.1</td>
<td>4</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>83</td>
<td>2690</td>
<td>MOBILE GRND. SUPT.</td>
<td>159.3</td>
<td>4.1</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>84</td>
<td>2729</td>
<td>MOBILE GRND. SUPT.</td>
<td>157.4</td>
<td>1.7</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>85</td>
<td>2764</td>
<td>MOBILE GRND. SUPT.</td>
<td>157.2</td>
<td>1.3</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>86</td>
<td>2771</td>
<td>VERTICAL POINT</td>
<td>156</td>
<td>0.4</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>87</td>
<td>2869</td>
<td>GUARD RAIL</td>
<td>151.5</td>
<td>5.1</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>88</td>
<td>2871</td>
<td>GUARD RAIL</td>
<td>159.1</td>
<td>3.1</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>89</td>
<td>2887</td>
<td>GUARD RAIL</td>
<td>157.4</td>
<td>1.7</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>90</td>
<td>2900</td>
<td>GUARD RAIL</td>
<td>157.2</td>
<td>1.3</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>91</td>
<td>2906</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>92</td>
<td>2908</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>93</td>
<td>3220</td>
<td>GUARD RAIL</td>
<td>159.1</td>
<td>3.1</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>94</td>
<td>3223</td>
<td>GUARD RAIL</td>
<td>157.4</td>
<td>1.7</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>95</td>
<td>3241</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>96</td>
<td>3290</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>97</td>
<td>3474</td>
<td>GUARD RAIL</td>
<td>159.1</td>
<td>3.1</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>98</td>
<td>3500</td>
<td>GUARD RAIL</td>
<td>157.4</td>
<td>1.7</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>99</td>
<td>3542</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>100</td>
<td>3548</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>101</td>
<td>3593</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>102</td>
<td>3594</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>103</td>
<td>3595</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>104</td>
<td>3600</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>105</td>
<td>3611</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>106</td>
<td>3799</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>107</td>
<td>oc-111</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>108</td>
<td>n2320</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>109</td>
<td>n2404</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>110</td>
<td>n2405</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>111</td>
<td>n2406</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>112</td>
<td>n2407</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>113</td>
<td>n2408</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>114</td>
<td>n2409</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>115</td>
<td>n2410</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>116</td>
<td>n2411</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>117</td>
<td>n2412</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>118</td>
<td>oc-045</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>119</td>
<td>n0797</td>
<td>GUARD RAIL</td>
<td>156.6</td>
<td>8.9</td>
<td>OBSTRUCTION LIGHT</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>120</td>
<td>N1075</td>
<td>ACCESS GATE</td>
<td>159.1</td>
<td>2.1</td>
<td>NO ACTION</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>121</td>
<td>N1077</td>
<td>ACCESS GATE</td>
<td>159.1</td>
<td>2.1</td>
<td>NO ACTION</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
</tbody>
</table>
Table 15: Obstructions (Continued)

<table>
<thead>
<tr>
<th>#</th>
<th>POINT NAME</th>
<th>DESCRIPTION</th>
<th>OBJECT ELEV</th>
<th>OBJECT PENETRATION</th>
<th>PROPOSED ACTION</th>
<th>SURFACE NAME</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>122</td>
<td>525</td>
<td>SIGN-TAXIWAY</td>
<td>144.6</td>
<td>2</td>
<td>NO ACTION</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>123</td>
<td>2110</td>
<td>POLE-CATENARY</td>
<td>185.5</td>
<td>0.3</td>
<td>NO ACTION</td>
<td>PT77 15L APPR-INNR</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>124</td>
<td>4010</td>
<td>POLE (OBSTRUCTION LIGHT)</td>
<td>161.6</td>
<td>31.5</td>
<td>NO ACTION</td>
<td>PT77 15L-33R TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>125</td>
<td>528</td>
<td>AIR CANNON</td>
<td>149.3</td>
<td>2.7</td>
<td>SEE NOTE 7</td>
<td>PT77 10-28 TRANS</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>126</td>
<td>1974</td>
<td>AIR CANNON</td>
<td>145.2</td>
<td>5.2</td>
<td>SEE NOTE 7</td>
<td>PT77 10-28 PRIM</td>
<td>ON AIRPORT</td>
</tr>
<tr>
<td>127</td>
<td>2890</td>
<td>AIR CANNON</td>
<td>139.7</td>
<td>2</td>
<td>SEE NOTE 7</td>
<td>PT77 15R-33L PRIM</td>
<td>ON AIRPORT</td>
</tr>
</tbody>
</table>
Relocate Taxiway Hotel (H)

Project Description
Exit Taxiway H will be relocated approximately 500 feet to the south to better serve aircraft landing on Runway 33L, with the recently displaced threshold (500’). As Taxiway F will exit the runway at the same location, new Taxiway H will act as a supplement to the existing distance primarily used on arrivals to Runway 33L. The relocation will reduce the Runway Occupancy Time (ROT) by capturing aircraft that would otherwise have to roll to the runway end and Taxiway P. The relocation would also eliminate the direct access from the RON apron to Runway 15R-33L that is prohibited by EB-75 and incorporated into the latest AC 150/5300-13A. The taxiway adjacent to the Runway 15R deicing pad will need a new designation (currently H). Any existing Taxiway H exit taxiway pavement no longer needed for runway or taxiway shoulder will be demolished.

Figure 16: Relocate Taxiway Hotel (H)

Project Justification
The relocation of Taxiway H to the south by approximately 500 feet better serves aircraft landing on Runway 33L, which will improve the overall efficiency of the airfield. The relocation of Taxiway H also removes the prohibited direct access from the RON apron to Runway 15R-33L.
Alternatives Considered
Relocation of Taxiway H to the north was considered but would result in an increased value to the runway occupancy time and reduce capacity. The selected alternative best serves aircraft landing on Runway 33L by maintaining a distance between Taxiway H and the Runway 33L landing threshold that reduces runway occupancy time.

Design Standards
The proposed Taxiway H relocation will meet AC 150/5300-13A design standards.

Navigational Aids
The Taxiway H relocation project will not affect or require the relocation of any navigational aids.

ATCT Considerations
The Taxiway H project will not impact visibility from the existing or future ATCT facility.

Federal Aviation Regulations (FAR) Part 77
Aircraft operating on the relocated Taxiway H will exceed FAR Part 77 transitional surfaces. However, such penetrations are permissible since the penetrations will result from aircraft transitioning through the area.

Project Schedule
The proposed project is scheduled to be completed by 2020.

Apron Fill at North Cargo Positions F18/F20

Project Description
The grass island located between positions F18A and F20A will be filled with new Portland Cement Concrete (PCC) to provide additional pavement for adjustment of parking between the two positions. The PCC will create additional area for parking and Remain Overnight (RON).
Project Justification
Paving the island area in between the two positions provides more flexibility for fleet mix parking and cargo servicing of the positions once the aircraft are parked. In addition, the aircraft containment marking can be extended to provide the appropriate clearance area for the aircraft.

Alternatives Considered
Alternatives included keeping the grass area and limiting the capacity of the parking positions. While aircraft are able to fit in the current positions, servicing limitations and potential for gear overrun are likely considering the size of aircraft that will be parked at this location.

Design Standards
Design standards include the grade of the apron where the aircraft will park at these locations as well as the drainage area and containing contaminated flow into the water system.

Navigational Aids
The apron infill improvement project will not affect or require the relocation of any navigational aids.

ATCT Considerations
As these are existing positions, the improvement has very little likelihood to create any line-of-sight shadows on the existing taxiway system.
Federal Aviation Regulations (FAR) Part 77
These are existing aircraft parking positions and have no potential to create any Part 77 penetrations given the distance from the runway.

Project Schedule
The proposed project is scheduled to be under construction by 2020.

VSR Section from Runway 33L to Future Fire Training Facility

Project Description
A VSR will be added to connect the existing roadway around the Runway 33L end to the new Aircraft Rescue and Fire Training Facility. This VSR will complete the roadway connection between the ARFF station and the training facility.

Figure 18: VSR Section from Runway 33L to Future Fire Training Facility

Project Justification
The new training facility will be used by personnel from the ARFF station. These personnel will need direct access across the airfield to the training facility. The VSR will provide direct on-airport access, shorten the drive time to the facility, and avoid the need to enter/exit several gates.

Alternatives Considered
The ARFF personnel could utilize the aircraft pavements (runways and taxiways) but this scenario does not provide dedicated access and creates a potential conflict situation between ARFF vehicles and aircraft and requires ATCT coordination. Another alternative would be to exit the airport property and re-enter via an AOA access gate on Dorsey Road. This requires additional drive time and time to access security gates.
Design Standards
All roadway geometry will meet the requirements necessary to accommodate the largest emergency response vehicles and provide movement for a top speed of 20 mph based on this vehicle size and type.

Navigational Aids
There are no navigational aids impacted, assuming that the road will be relocated to accommodate future Runway 10R-28L in the long term.

ATCT Considerations
The planned VSR will not impact the visibility of the existing or future ATCT facility.

Federal Aviation Regulations (FAR) Part 77
There are no impacts to the Part 77 surfaces, assuming the road will be relocated to accommodate future Runway 10R-28L in the long term.

Project Schedule
The proposed project is scheduled to be under construction by 2020.

Taxiway Victor (V) Relocation

Project Description
Taxiway V will be demolished and reconstructed at a separation distance of 600 feet from the Runway 10-28 centerline. This project removes nonstandard Taxiway V from its current location and reconfigures it to meet FAA design standards for runway/taxiway separation.

Figure 19: Taxiway Victor (V)
Project Justification
The reconfiguration of Taxiway V at a 600-foot separation from the Runway 10-28 centerline is needed to meet FAA design standards for an ADG Group V runway having a Category II/III approach per AC 150/5300-13A. In addition, new Taxiway V allows for more queuing of aircraft departures.

Alternatives Considered
The only potential alternatives were to either leave Taxiway V at its current nonstandard design or eliminate Taxiway V without reconstructing it to standards.

Design Standards
The proposed Runway 10-28 taxiway improvement project will meet AC 150/5300-13A design standards by providing 600 feet of separation between the centerline of Runway 10-28 and Taxiway V

Navigation Aids
Reconstructed Taxiway V will be located within the glideslope critical area and thus any aircraft parked while queuing on Taxiway V may affect the glideslope.

ATCT Considerations
The planned Taxiway V reconfiguration will be visible from the existing and proposed ATCT.

FAR Part 77
The project is not anticipated to affect FAR Part 77 surfaces.

Project Schedule
The proposed project is scheduled to be under construction by 2020.

Runway 15R Deicing Pad Expansion

Project Description
The existing Runway 15R deicing pad will be expanded and also include an area for snow dumping (P41). In addition to providing deicing operations, the 15R pad will simultaneously allow for RON parking in the colder months. In the warmer months when deicing is not required, the pad can be wholly used for RON parking. This project will require relocation of Gate A, the bus/taxi staging area (P148), FAA RTR facility, triturator (P43), and glycol storage equipment (P40).
Project Justification

Expansion of the Runway 15R deicing pad enhances the utility of the pad, improves operations and supports simultaneous deicing, RON parking, and aircraft queuing.

Alternatives Considered

Several alternatives for the Runway 15R deicing pad were considered, ranging from a minimum build to a maximum build. The minimum build would not impact the RTR or the triturator, but would not permit simultaneous deicing operations and RON parking. In addition to the standard deicing operations, the preferred maximum build alternative, offers year-round RON parking.

Design Standards

The proposed Runway 15R Deicing Pad will meet all applicable AC 150/5300-14C and 150/5300-13A design standards.

Navigation Aids

The proposed development will not infringe upon any airport navigation systems or associated critical areas provided the RTR is relocated in conjunction with the future ATCT prior to construction.

ATCT Considerations

The planned Runway 15R deicing pad expansion will be visible from the existing and proposed ATCT.

FAR Part 77

The project is not anticipated to affect FAR Part 77 surfaces.
Project Schedule
The proposed project is scheduled to be under construction by 2020.

Runway 10 Hold Pad

Project Description
In conjunction with the reconstruction and extension of Taxiways F and R, a ±190,000 SF hold pad will be constructed at the Runway 10 end. The hold pad will provide the ATCT with flexibility to sequence aircraft departing Runway 10 and manage aircraft queueing.

Project Justification
The proposed Runway 10 hold pad will improve the queueing of aircraft departing Runway 10 while also minimizing congestion along proposed Taxiway F and R.

Alternatives Considered
Alternatives considered for the hold pad included not developing a hold pad as well as locating the hold pad further east from the end and west of Taxiway G, and shifting the airline maintenance facilities to the west. Given that the hold pad will help to facilitate aircraft departure flow, the no-build option was rejected. The alternative site near Taxiway G was eliminated from consideration due to the ATCT line-of-sight impacts that would result from aircraft parked on the hold pad. The Taxiway G location also would require aircraft to be released into the queue and would not offer immediate access to the Runway 10 end for departure.
Design Standards
The proposed Runway 10 hold pad will meet 150/5300-13A design standards.

Navigation Aids
The proposed development is not likely to infringe upon any airport navigation systems or associated critical areas. As a portion of the Runway 10 hold pad is located within the ASR critical area, the pad requires further evaluation during the design phase to determine if any signal reflection issues would occur.

ATCT Considerations
The planned Runway 10 hold pad will be visible from the existing and proposed ATCT pending the proposed removal of trees from the existing Northwest Quadrant area.

FAR Part 77
Aircraft operating on the new hold pad will exceed FAR Part 77 transitional surfaces. However, such penetrations are permissible since the penetrations will result from aircraft transitioning through the area.

Project Schedule
The proposed project is scheduled to be under construction by 2020.

7.3.2. Terminal Enhancements

Commuter Concourse Demolition and Remain Overnight (RON) Parking Construction

Project Description
The Commuter Concourse at the end of Concourse D was originally constructed for airline hubbing practices that were in existence at BWI Marshall from the mid-1980s to late-1990s. Since the early 2000s, the Commuter Concourse has seen sparse activity. The Commuter Concourse apron continues to support the USAir commuter service and RON operations, but the pavement is deteriorating and in need of repair.

The Commuter Concourse has served its purpose and exceeded its useful life. The low utilization of Commuter Concourse gates warrants demolition of the concourse and conversion to a RON parking area. Given the existing pavement design specific to regional aircraft, the apron is capable of supporting Group III aircraft only. The new RON apron would be constructed to support multiple aircraft parking positions of varying size, up to ADG V standard.
Project Justification
By demolishing the Commuter Concourse and converting the area to support RON positions, MAA can meet the growing demand for RON parking positions at BWI Marshall. The deferral of this project would compound the demand for RON spaces at BWI Marshall and could result in parking aircraft overnight at more remote positions. Such a practice can prove to be undesirable if the positions can only be provided where runway crossings are necessary.

Alternatives Considered
Due to the lack of space available on the airfield for RON parking, no alternative, other than the “no-build” option was considered.

Design Standards
The future RON Parking Apron will be configured to meet FAA design standards.

Navigation Aids
The project is located away from all navigational aid critical areas and will not interfere with any airport navigation systems.
ATCT Considerations
The future RON Parking Apron at the site of the existing Commuter Concourse (to be demolished) will not be operated in a manner that will affect the functions or visibility of the existing or future ATCT facility. ATCT representatives will be included in the design process to ensure that all future aircraft are positioned on the future RON Parking Apron such that tail heights will not interfere with ATCT line-of-sight visibility.

FAR Part 77
The presence of aircraft remaining overnight on the apron are not anticipated to affect FAR Part 77 surfaces.

Project Schedule
The proposed project is scheduled to be under construction by 2018.

Concourse D 2-Gate Extension

Project Description
Since the Commuter Concourse at Concourse D will be demolished for additional RON aircraft parking as part of a separate project, a two-gate extension of Concourse D will be developed to expand the existing holdroom space available in order to support two aircraft gate positions.

Figure 23: Concourse D 2-Gate Extension
Project Justification
The Concourse D 2-Gate Extension is needed to replace a portion of the Commuter Concourse at Concourse D in order to accommodate forecasted demand.

Alternatives Considered
The alternative considered added only dedicated aircraft RON spaces for this area. However, the lack of access for passenger boarding bridges and hold rooms that comply with code requirements of larger aircraft necessitates building modifications to accommodate 2 gates that would connect to the terminal. The apron at these gates could still be used for RON, but would also service airline operations with interior gate infrastructure.

Design Standards
The project will be designed and built to meet applicable building codes and adhere to FAA design standards.

Navigation Aids
The project is located away from all navigational aid critical areas and will not interfere with any airport navigation systems.

ATCT Considerations
There are minimal line-of-sight shadows that result from the extension of Concourse D from both the existing and proposed ATCT locations. It is not anticipated that the shadows will obstruct the ATCT’s existing/future view of aircraft operating on Taxiway T around the terminal facility.

FAR Part 77
The project is not anticipated to affect FAR Part 77 surfaces.

Project Schedule
The proposed project is scheduled to be under construction by 2020.

Concourse E (4-Gate Expansion)

Project Description
A proposed extension to Concourse E will add approximately 41,000 square feet of terminal space to support the addition of four Group V aircraft gates (P3-P4). The project will be implemented in phases. The first phase will include the addition of approximately 19,000 square feet of terminal space to accommodate two Group V gates. The second phase incorporates approximately 22,000 square feet of terminal building for two additional Group V aircraft gates when demand warrants.
The associated apron pavement work and vehicle service road (VSR) relocation required for the phased projects will also be integrated into the overall project. This apron is proposed for development in the infield area east of Concourse E, bounded by Taxilanes AA, Taxilane N, and Taxiway B. The Concourse E expansion will also require the relocation of Security Checkpoint Juliet (P50).

Figure 24: Concourse E (4-Gate Expansion)

Project Justification

In order to address existing and projected increased international service demand, it is necessary to add gates at BWI Marshall’s international terminal. Currently, during peak periods, all international concourse gates are occupied. The pending D/E Connector project will add peak-period capability in the short-term and when demand warrants, the additional gates can be implemented.

Alternatives Considered

Two alternatives were assessed in addition to extending Concourse E. Alternative 1 added new gates to Concourses C and D after the closure of Runway 4-22 and realignment of Taxiways A and P. This option allowed for potentially 14 new gate positions. A second alternative looked at adding a new terminal section, Concourse F. Depending on the alignment of Taxiway B; new Concourse F could provide 14 new gate positions.

An extension of Concourse E will meet the projected demand and provide the most flexibility for future development since it could be a phased terminal extension. The costs associated with this project were also determined to be lower than the costs associated with building a new terminal section.

Design Standards

The projects will be designed and built to meet applicable building codes and FAA design standards.
Navigational Aids
The terminal is located away from all navigational aid critical areas and will not interfere with any airport navigation systems.

ATCT Considerations
From the existing ATCT, there are line-of-sight shadow issues from aircraft tails parked at the 2-gate expansion; however the linear footprint of the shadows are minimal and would not obstruct the ATCT’s view of aircraft on Runway 15L-33R.

The proposed ATCT will need to be commissioned prior to Phase 2 of the subject project as the 3rd and 4th gates of the terminal extension would obstruct existing ATCT visibility to Taxiways B and S. It is anticipated that Phase 2 of the concourse extension project will occur after 2018.

Once the future ATCT is completed, the overall 4-gate planned terminal extension will not affect the functions or visibility of the new facility.

FAR Part 77
Neither the terminal nor apron (aircraft included) portions of the project are anticipated to affect FAR Part 77 surfaces.

Project Schedule
The proposed project (P3) is planned to be under construction by 2018. The Phase 2 project (P4) will be completed after the new ATCT is constructed.

Relocate Security Checkpoint Juliet

Project Description
This project involves relocation of Security Checkpoint Juliet to facilitate the Concourse E expansion project. The new checkpoint (P50) will be located on the east side of Runway 15L-33R, adjacent to the GA facility expansion. Access to the airfield will be via the vehicle service road on the Runway 15L end. Security Checkpoint Juliet facilities will consist of guard booths and a vehicle inspection area.
Project Justification
The Concourse E expansion project will eliminate the current Security Checkpoint Juliet and bisect the roadway access to the airfield through the existing location. The checkpoint will have to be relocated as a result of the proposed project.

Alternatives Considered
No other construction alternatives were considered.

Design Standards
The security checkpoint will be designed to meet all Transportation Security Administration (TSA) and BWI Marshall standards for security inspections.

Navigational Aids
The location of Security Checkpoint Juliet will have no impact to navigational aids.

ATCT Considerations
The planned location will have no impacts to the existing or proposed ATCT.

FAR Part 77
The new checkpoint will have no impact to Part 77 surfaces.

Project Schedule
The checkpoint will be completed in coordination with the Concourse E expansion and is expected to be complete or under construction by 2020.
Relocate Airfield Lighting Vault

Project Description
The existing airfield lighting vault (ALV) at BWI Marshall was originally the ARFF Station and was never intended to remain the ALV for an extended period of time. Although the vault layout makes optimal use of the available space and is well organized, the vault footprint is based on its former function as an ARFF Station and is not typical of a new vault layout. The existing ALV also has dated equipment and infrastructure and currently houses Maryland Environmental Services (MES) glycol monitoring and glycol storage control equipment, as well as a Glycol Recovery Vehicle (GRV) dump location.

Most importantly, the current location severely impacts the flexibility and maneuverability of aircraft to and from the Concourse B-C apron “alley”. Furthermore, the existing ALV lies in close proximity to aircraft traffic in the terminal ramp non-movement areas that are not under ATCT control. A new vault (P14) is proposed to be constructed adjacent to future Taxiway P (decommissioned Runway 4-22) and the Runway 28 deicing pad.

Figure 26: Relocate Airfield Lighting Vault
Project Justification
The current ALV location causes a pinch point for aircraft circulation on and around the terminal ramp system as previously described. In addition, Group V aircraft cannot taxi past the ALV on the ramp, and the building severely limits the ability to install a Group V dual taxiway system around the ramp. A dual taxi lane system is considered critical to the efficiency and safety of the overall ramp operation. MAA took the opportunity with the current ALP Update to propose the relocation of the facility to accomplish several benefits for the Airport including reliability, capacity and safety, utility structure organization, and resolution of drainage issues.

Alternatives Considered
Alternatives included maintaining the existing location and upgrading all of the homerun connections. However, outages would be more extensive and the current facility was not originally an airfield lighting vault and lacks the typical features that are needed. Other proposed locations were considered, but the distance from existing airfield infrastructure would be longer and more costly. Other locations had adverse impacts to the airfield infrastructure.

Design Standards
All facility elements will satisfy current FAA design standards, including adherence to the required safety and object free areas identified in AC 150/5300-13A.

Navigational Aids
Other than the possibility of temporary, night-time outages during construction, there will not be any impacts to navigational aids by this project.

ATCT Considerations
New infrastructure for the software required to operate the airfield lighting from the existing and proposed ATCT will likely be required. The system will be powered from the ALV and connected to the ATCT by communication utilities. During construction, temporary control outages may be experienced when transitioning the system to the new ALV.

Due to the limited vertical development (±25 feet above ground level (AGL)), the relocated lighting vault will not impact the existing or proposed ATCT line-of-sight.

FAR Part 77
The project is not anticipated to affect FAR Part 77 surfaces. The height of the transitional surface from Runway 10-28 in the vicinity of the proposed lighting vault is approximately 35 feet AGL. Therefore, the 25-foot ALV structure will not penetrate the surface.

Project Schedule
The proposed project is scheduled to be under construction by 2017, with all ancillary elements (existing vault demolition and pavement infill) complete by 2019.
New Sky Bridge C

Project Description
During Phase 1, a project to improve accessibility from the Hourly Parking Garage to the terminal will be undertaken. The Concourse C Sky Bridge is proposed to provide direct access from Level 6 of the Hourly Garage to the terminal. This linkage will improve the access already provided by the Sky Bridges at Concourses A, B, and D as it will directly serve passengers using Concourse C. This walkway would be widely accessible throughout the Hourly Garage via multiple elevators. Sky Bridge C will also improve connectivity from the future hotel sky bridge to the Hourly Garage and terminal.

![Figure 27: New Sky Bridge C](image)

Project Justification
The presence of a sky bridge at Concourse C will improve the level of customer service by reducing walking distances from the Hourly Garage and future hotel to Concourses C.

Alternatives Considered
Other than the “no-build” alternative, no other construction alternatives were considered because all concourses other than Concourses C and E are served by existing sky bridges.

Design Standards
The Concourse C Sky Bridge will be designed and constructed in accordance with applicable codes.
Navigational Aids
This project is located away from all navigational aids and associated critical areas and will not interfere with airport navigation systems.

ATCT Considerations
The proposed project will not impede ATCT visibility.

FAR Part 77
The facilities will be designed to conform to the horizontal surface (±293 feet MSL).

Project Schedule
The proposed project is scheduled to be under construction by 2020.

7.3.3. Landside Improvements

New Terminal Response Fire Rescue Station

Project Description
A secondary Fire Rescue facility (P24) will be constructed to provide the terminal and landside with emergency response capability. The proposed location will provide for improved response times associated with terminal and landside issues as opposed to the existing midfield location handling all emergency calls.

Figure 28: New Terminal Response Fire Rescue Station
Project Justification
The existing location of the Airport Rescue and Firefighting Facility (ARFF) adequately serves the existing and future airfield. However, Fire/Rescue personnel also respond to terminal and landside emergencies, and need to respond from a landside location rather than crossing active runways to reach people in distress, or to deal with potential terminal or other facility structural fires. A secondary Fire/Rescue station is recommended to provide adequate response times for emergencies in the terminal, North Cargo area, and the general aviation areas.

Alternatives Considered
Four sites were evaluated for the secondary Fire Rescue facility as follows:

- Alternative 1 - Adjacent to the proposed Taxi Staging Area
- Alternative 2 - ESP Lot internal to the interchange loop ramp
- Alternative 3 - On Elm Road at the intersection adjacent to the entrance to the North Cargo Area roadway
- Alternative 4 - On the west side of Terminal Road between Aviation Boulevard and Elkridge Landing Road

Alternative 4 is the preferred site for the secondary Fire Rescue station. This alternative is close to the terminal, North Cargo area, and general aviation areas to enhance emergency response times; and can be constructed independently of other potential landside improvement projects.

Design Standards
The Fire Rescue station and all associated projects will be designed to meet applicable codes and building requirements including FAA standards.

Navigational Aids
The Fire Rescue station is located away from all navigational aids and associated critical areas and is not anticipated to interfere with any airport navigation systems.

ATCT Considerations
The proposed project will not impede ATCT visibility of airfield operational and runway approach areas.

FAR Part 77
The project does not impact Part 77 surfaces.

Project Schedule
The proposed project is scheduled to be under construction by 2020.
New Vehicle Service Station

Project Description
A new vehicle service station is proposed on a vacant lot, Parcel 18, at the intersection of Amtrak Way and Aviation Boulevard (P46). The station would include fueling facilities, a car wash, and a convenience store.

Figure 29: New Vehicle Service Station

Project Justification
The vacant lot is available for development and can generate non-aeronautical revenue for the MAA. Additionally, a proposed vehicle service station will meet the needs of Consolidated Rental Car Facility users.

Alternatives Considered
Given the demand for a vehicle service station and its associated amenities and that the existing lot is vacant, there were no other alternative locations considered.

Design Standards
The vehicle service station will be designed to meet applicable codes and building requirements.

Navigational Aids
The vehicle service station is located away from all navigational aids and associated critical areas and is not anticipated to interfere with any airport navigation systems.
ATCT Considerations
The proposed project will not impede ATCT visibility of airfield operational and runway approach areas.

FAR Part 77
The proposed project will not impact Part 77 surfaces.

Project Schedule
The proposed project is scheduled to be under construction by 2020.

Terminal Roadway Widening and Access Improvements

Project Description
Due to the current congestion and the future anticipated passenger forecast levels, I-195 inbound lanes will need to be widened. This project will alleviate the existing queuing issues during peak hours and increase the safety of travelers utilizing these roadways to arrive at the Airport. The location of the proposed roadways would provide sufficient width to increase the number of roadway lanes to meet traffic demand through the planning period.

In order to segregate vehicle traffic associated with the proposed hotel, vehicular access in the vicinity of the hotel and Hourly Garage will ultimately need to be modified. Hotel related access projects include reconfiguration of the roadway for service vehicle access, improving hotel patron egress, constructing an additional lane for hotel/garage access, and closing the existing employee access roadway.

Figure 30: Terminal Roadway Widening and Access Improvements
Project Justification
Traffic operations along I-195 eastbound between MD 170 and the terminal are prone to queuing during the evening hours and delays are experienced by motorists accessing the terminal. During an observation period there were several significant queues, up to one half mile in length, witnessed. Additionally, the queuing causes access to the Upper Level roadways to become blocked at times. Therefore, modifications to the existing roadway infrastructure are necessary.

Alternatives Considered
Four alternatives for widening I-195 were developed and reviewed as summarized below.

- **Alternative 1** – Provide an additional lane from the taxi/bus storage area merge to the Upper Level roadway or provide a shorter lane by beginning construction at the island that separates the Authorized Vehicle entrance/exit from the runway to the Upper Level roadway.

- **Alternative 2** – Construct an auxiliary lane between Terminal Road and the Hourly Garage with the Terminal Road ramp remaining as one lane or being marked for two lanes.

- **Alternative 3** – Extend the lane for Authorized Vehicles on the Lower Level roadway to just past the split from the Upper Level roadways and allow access to the express lane via the lane for the Hourly Garage.

- **Alternative 4** – Provide a temporary portable dynamic message sign near the cell phone lot and along I-195 encouraging patrons to pick up passengers on the departures level roadways during peak times of queuing.

The recommended alternative was to introduce Alternative 4 as a short-term solution while moving forward with widening the inbound lanes of I-195.

Various alternatives were evaluated to determine the optimal configuration of the hotel buildable area, and the ancillary projects and roadway layouts. The preferred alternatives utilize the existing roadway around the future hotel and Hourly Garage to the greatest extent possible, allowing for Garage expansion.

Design Standards
The Terminal Roadway Widening and Access Improvement projects will be designed to meet applicable standards.

Navigational Aids
These projects are located away from all navigational aids and associated critical areas and are not anticipated to interfere with any airport navigation systems.
ATCT Considerations
The proposed projects will not impede ATCT visibility of airfield operational and runway approach areas.

FAR Part 77
The roadway improvements do not impact Part 77 surfaces.

Project Schedule
The proposed projects are scheduled to be under construction by 2020.

Upper Level Roadway Widening at Concourse E

Project Description
In support of the increased traffic and growth anticipated for Concourse E, MAA proposes to widen the upper level roadway by two additional lanes. Consistent with the existing terminal curbside/road between Concourses A and D, this project entails widening the outer lanes of the terminal roadway and segregating public vehicle operators (outer lanes) from private vehicle operators (inner lanes). This project will improve the level of service provided at the international concourse and of the overall terminal roadway system.

![Figure 31: Upper Level Roadway Widening at Concourse E](image)

Project Justification
With the increased traffic and growth anticipated for Concourse E, widening of the roadway is needed to accommodate the future demand.
Alternatives Considered
Besides a no-build option, no other construction alternatives were considered.

Design Standards
The Upper Level Roadway Widening at Concourse E will be designed to meet applicable standards.

Navigational Aids
These projects are located away from all navigational aids and associated critical areas and are not anticipated to interfere with any airport navigation systems.

ATCT Considerations
The proposed projects will not impede ATCT visibility of airfield operational and runway approach areas.

FAR Part 77
The roadway improvements do not impact Part 77 surfaces.

Project Schedule
The proposed projects are scheduled to be under construction by 2020.

Building 113 Demolition

Project Description
Removal of the former maintenance building to create a site that can be utilized for other purposes.

Figure 32: Building 113 Demolition
Project Justification
The current building will require extensive improvements to meet the current code and be utilized by MAA personnel or another tenant. As a result, there is not a viable use or occupant so the building must be abandoned and demolished. Removal of the building and reuse of the site is consistent with the planned phased relocation of airport maintenance facilities to a new site.

Alternatives Considered
The only alternative is to renovate and improve the facility to make it usable for another purpose and tenant. However, the cost to upgrade the facility to meet all applicable codes would be extensive and unreasonable.

Design Standards
Building 113 will be demolished according to applicable demolition and disposal codes and standards.

Navigational Aids
There are no impacts to navigational aids.

ATCT Considerations
There are no impacts to ATCT line-of-sight conditions.

FAR Part 77
The building demolition presents no impact to the Part 77 surfaces.

Project Schedule
The proposed project is scheduled for construction by 2020.

Taxicab Support Building at Former Hotel Site

Project Description
In conjunction with the Phase I development of the Runway 15R deicing pad expansion, the existing taxi/bus staging area and the associated administrative support building will need to be relocated. The operations will be relocated to the former Sheraton Hotel site located northwest of the proposed Runway 15R deicing pad. The staging areas will make use of the existing pavement that was formerly used for hotel parking. A new administrative support facility will be built, or a temporary staging trailer will be placed adjacent to the parking area to manage the taxi operations.
Project Justification
The taxicab administration building and associated parking operations need to be relocated in order to allow for the expansion of the Runway 15R deicing pad.

Alternatives Considered
Other locations were considered for the relocated staging area, including utilizing portions of the existing Daily Express Parking Lot or the Long Term Economy Parking. Given the proposed location’s proximity to the terminal building, the ability to make use of the existing parking facility, and the fact that the site is currently vacant, the former hotel site proved to be the most advantageous location. It is possible that the proposed site will not be developed. In this event, a temporary staging trailer would be installed on site.

Design Standards
The administrative support facility will be designed to meet applicable codes and building requirements.

Navigation Aids
There are no impacts to navigational aids.

ATCT Considerations
There are no impacts to ATCT line-of-sight conditions.

FAR Part 77
The building presents no impact to the Part 77 surfaces.
Project Schedule
The proposed project is scheduled for construction by 2020 and will be necessary prior to the proposed expansion of the Runway 15R deicing pad.

7.3.4. General Aviation/Hangar Improvements

New Aircraft Maintenance Facilities

Project Description
As identified in the 2011 Master Plan Technical Report (Volume II), two aircraft maintenance facilities (P11 and P12) are proposed during Phase 1 to accommodate the maintenance requirements of air carriers at BWI Marshall. The P11 facility is intended to accommodate a combination of ADG IV and ADG V aircraft at an elevation of 235 feet MSL. The P12 facility is intended to accommodate ADG III aircraft at an elevation of 210 feet MSL.

Figure 34: New Aircraft Maintenance Facilities

Project Justification
The 2011 Master Plan Technical Report identified a need for additional aircraft maintenance facilities by 2020 to ensure BWI Marshall has the ability to accommodate the demand for aircraft maintenance at the Airport.
Alternatives Considered
Two general site locations were initially evaluated. Within the preferred site location, multiple alternative site layout plans were considered to accommodate the aircraft maintenance facilities. The preferred building layouts were selected but altered slightly, in part, because they allow for development of both facilities and provide for development of the Runway 10 hold pad. The proposed facilities will pose impacts to the proposed Runway 10 hold pad and Taxiway F extension from the existing ATCT if the projects are completed before the ATCT relocation.

Design Standards
The proposed aircraft maintenance facilities will be designed and built to meet applicable building codes and FAA design standards.

Navigational Aids
The proposed maintenance facilities are within the ASR critical area and require further evaluation during the design phase to determine if any signal reflection issues would occur.

ATCT Considerations
Due to the alignments of the proposed facilities, the existing and proposed ATCT would have a clear line-of-sight to the Runway 10 end as well as the Runway 10 hold pad.

FAR Part 77
The proposed aircraft maintenance facilities and associated aircraft parked on the ramps will not impact the FAR Part 77 transitional or horizontal surfaces.

Project Schedule
The facility is proposed to be complete or under construction by 2020.

7.3.5. Support Facilities

Second FBO

Project Description
The MAA proposes to construct additional general aviation facilities (P7) on the east side of the airfield between the existing general aviation facilities and the existing long-term parking lot. The project includes a Pilot Center, GA hangar buildings, aircraft ramp, fuel storage facility, vehicle parking, and other necessary facilities. The Pilot Center will contain the following elements: lobby waiting area, operations counter, customer service office, manager’s office, flight planning room, weather room, pilot’s lounge, pilot rest facility, conference rooms, and administrative offices.
Project Justification
The proposed additional general aviation facilities will provide more space for GA activities for based aircraft at BWI Marshall. These facilities offer the potential for increased revenue.

Alternatives Considered
A number of alternative sites have been considered for additional general aviation facilities at BWI Marshall. However, for operational reasons, all of the potential sites were located adjacent to the existing GA area. The alternative sites included locations south, east, and north of the proposed GA area. Locations to the south and east were eliminated from consideration due to potential environmental impacts.

Design Standards
The proposed general aviation facilities will be designed to meet applicable building codes and FAA design standards.

Navigation Aids
The future GA facilities are near the future Runway 15L glide slope. The layout for the GA facilities was altered during the Master Plan process to avoid the future Runway 15L glide slope critical area. The GA Apron will support the future helipad that must be relocated from its current site to avoid conflicts that would result from its presence in the proposed glide slope critical area.

ATCT Considerations
The proposed project will not impede ATCT visibility of airfield operational and runway approach areas.
FAR Part 77
The proposed general aviation facilities are not anticipated to affect FAR Part 77 surfaces.

Project Schedule
These facilities are proposed to be complete or under construction by 2020.

New Airport Traffic Control Tower

Project Description
The MAA proposes to construct a new ATCT in the existing manager’s parking lot, adjacent to Terminal E (P16). The preferred location – known as Site 2A – was determined during the MAA’s ATCT site selection process which evaluated numerous potential locations. MAA then attended two separate sessions at the FAA’s Airway Facilities Tower Integration Laboratory (AFTIL) to facilitate the FAA ATCT site selection process which validated the recommended Site 2A location. The height of the proposed tower is 376 feet MSL including antennas.

Figure 36: New Airport Traffic Control Tower

Project Justification
The existing ATCT at BWI Marshall is currently located within the main passenger terminal area, north of Concourse C, with a top of cab elevation of 281 feet MSL, and a cab eye elevation of 264 feet MSL. The location of the ATCT requires Air Traffic Control (ATC) personnel to utilize the public terminal facilities for parking and access. The existing ATCT has been deemed to be deficient for BWI Marshall in terms of size, height, airfield visibility issues, and the ability to expand.
Alternatives Considered
As previously mentioned, multiple suitable sites were identified by the MAA for a new ATCT during the site selection process. Four sites were evaluated by the FAA through AFTIL with Site 2A being chosen by the MAA and the FAA as the preferred alternative.

Design Standards
The facility will be designed and constructed in accordance with FAA design standards for a new ATCT and will meet applicable building codes. To ensure standard FAA design criteria will apply to future apron gradient associated with terminal development proposed in Phase 3, the existing manager’s parking lot needs to be lowered by 6 feet during ATCT construction.

Navigational Aids
The proposed ATCT could potentially interfere with the RTR in the vicinity. As part of this project, the RTR should be relocated to avoid any communication issues. There are no other impacts to navigational aids or critical areas.

ATCT Considerations
The new ATCT (376 feet AMSL with a cab eye elevation of 346 feet AMSL) will provide the ATC personnel with unobstructed views of all the movement areas. However, it should be noted the existing ATCT should be lowered or removed to avoid visibility issues that would occur on the existing Runway 10-28.

FAR Part 77
The new ATCT will exceed the Part 77 horizontal surface (293 feet MSL). However, a thorough constraints and airspace analysis was performed for Site 2A and it was determined to be outside the applicable FAA Order 8260.3B, United States Standard for Terminal Instrument Procedures (TERPS) surfaces. The analysis included instrument landing system category (ILS CAT) I/II/III approach and missed approach surfaces.

Project Schedule
The facility is proposed to be complete or under construction by 2020.

Relocate Fire Training Facility

Project Description
The MAA proposes to replace the Fire Training Facility at a site that can accommodate the necessary facilities (P45). The relocated facility will include a burn pit area, firefighting maneuvering area, training operations area, realistic interior fire building, accessory facilities, and other facilities and roadway access necessary to serve as a regional training facility.
Project Justification
The existing BWI Marshall Fire Training Facility was built in 1985, prior to the establishment of design standards for fire training facilities. Updates to the standards have occurred since 1985, with the latest update occurring in 2010 (FAA AC 150/5220-17B). As a result of the BWI Marshall Fire Training Facility being designed and constructed prior to the first published guidelines, upgrades were made in 2006. These improvements were consistent with the then current AC including the use of agent application and apparatus discharge rates that offset the smaller than required burn area currently in use at BWI Marshall. The current AC no longer allows this practice and thus, complete facility redesign is required. The proposed realignment of Mathison Way in Phase 3 and the future aviation use identified for the existing Fire Training Facility area require the relocation of the existing Training Facility. In lieu of modifying the existing Fire Training Facility to meet standards, MAA prefers to cease operations at the existing facility and transfer functions to the Fire Training Facility site recommended on the ALP during Phase 1. The existing Fire Training Facility will be demolished and remediated after the new facility is constructed.
Alternatives Considered

In September 2013, a Fire Training Facility Relocation Analysis was conducted to determine viable locations for the facility, and develop a conceptual layout based on the latest FAA design standards. The analysis included two alternatives, with the option depicted on the ALP deemed the preferred site. The alternate site is located south of decommissioned Runway 4; as previously identified on the 2011 ALP. The analysis determined the location previously identified on the 2011 ALP was incompatible with the aviation-related development envisioned for the adjacent areas in the future.

Design Standards

The facility will be constructed in accordance with design standards for an ARFF Training Facility per AC 150/5220-17B. Given the proximity of the site to the airfield, the facility will be designed to meet the standards set forth in AC 150/5300-13A, as well as other applicable FAA requirements.

Navigational Aids

The relocation of the Fire Training Facility is not expected to interfere with any existing or future airport navigation systems.

ATCT Considerations

Given that the site will be used infrequently and is located due south of existing Runway 10-28, no line-of-sight or glare impacts are anticipated from this development project for both the existing and future ATCTs.

FAR Part 77

The proposed facility is situated within the Part 77 7:1 transitional surface for the existing Runway 10-28 and the future Runway 10R-28L. The proposed development will entail limited vertical development, and is located outside a 25-foot BRL identified for this area. Regardless, the proposed Training Facility will be designed to provide sufficient clearance to meet FAR Part 77 requirements.

Project Schedule

The Fire Training Facility is expected to be complete by 2020.

Airport Maintenance Complex Relocation and Consolidation (Phase 1)

Project Description

The MAA proposes to relocate and consolidate the existing airport maintenance facilities currently located at the Elm Road complex. The maintenance facilities are managed by the Airport’s Office of Maintenance and Utilities (OMU), Division of Airfield. The proposed location for the consolidated maintenance facility is a developed, paved parking lot on the south side of the airfield; referred to as the Gold Lot.
The maintenance functions to be consolidated include the current airport maintenance facilities, offices, and related amenities at the Elm Road complex, as well as the additional staging and storage of the snow removal equipment currently at parking locations midfield and north of the economy lot. Phase 1 proposes the Snow Removal Equipment (SRE) building to be constructed (P30). In support of future maintenance functions, including snow removal, a section of VSR is proposed to connect the maintenance facilities with the airfield via the future Parking Apron and Aircraft Isolation Area.

Figure 38: Airport Maintenance Complex Relocation and Consolidation (Phase 1)

Project Justification
The existing Elm Road complex includes maintenance facilities and offices, along with related amenities in various structures and non-connecting buildings. Storage of the SRE is currently located in a parking lot north of the Elm Road complex during the summer months. Due to the high acquisition cost of the SRE, an appropriate facility is required to store the vehicles during the hot summer months. The usable life of SRE is dramatically reduced when the equipment is outdoors susceptible to heat and inclement weather.

Alternatives Considered
For the consolidation of the maintenance facilities, four alternative sites were evaluated prior to the selection of the Gold Lot as the proposed site:

- MAC Building Site – This was the location previously identified on the 2011 ALP, however due to the site constraints, it was not selected. The MAC Building site is a wooded area with changes in terrain that requires extensive mitigation prior to site development. The confined area is also limited in its ability to expand and allow for the appropriate SRE staging.
• Gold Lot Site – The Gold Lot Site was the selected alternative due to its proximity to the airfield and the ability to utilize a previously developed site to reduce the overall environmental impacts. This site is ideally located to allow for site expansion and SRE staging. This site does not conflict with any previously identified use.

• Midfield Cargo Site – This site borders the midfield cargo aircraft apron which serves cargo aircraft and also provides staging area for maintenance equipment. The Midfield Cargo Site was eliminated due to the layout only accommodating narrow and contiguous buildings and extensive earthwork and grading are required.

• Second FBO Site – This alternative is located in the existing economy parking lot, where the proposed Second FBO site is to be located. Due to the site being developed, the environmental impacts are low, with minimal disruption to the existing parking lot. However, due to the site restriction, there is limited space for expandability and SRE staging.

Design Standards
The proposed SRE building would be constructed in conformance with MAA requirements and FAA design and construction standards. It will be clear of the future Runway 10R-28L 25-foot BRL and all other design surfaces in the vicinity; including the RSA, OFA, and navigational aid critical areas of both existing Runway 15R-33L and future Runway 10R-28L.

Navigational Aids
There are no proposed navigational aid impacts due to the site being located on the south side of the airfield.

ATCT Considerations
The proposed consolidated maintenance facility is beyond the airfield movement areas and thus would not pose any issues to the ATCT.

FAR Part 77
The proposed maintenance facilities are not anticipated to penetrate the Part 77 surfaces.

Project Schedule
The construction of the SRE building is estimated to be complete prior to 2020.
Northwest Quadrant Perimeter Road Construction (Runway 10)

Project Description
The MAA proposes to construct a landside, public-use roadway to allow access to the proposed maintenance facilities as well as a secure on-airport roadway that would connect the main terminal with the Midfield Cargo Complex. The roads will be two-lanes, paved, with a maximum grade of approximately three percent. The proposed landside roadway will be used by the public to access the parking lots for the proposed maintenance facilities without entering the secure areas of the airport. The proposed secure roadway would be used by airport maintenance vehicles, security vehicles, and air cargo tug vehicles. Vehicles would enter the secure roadway through a security gate located off of Stony Road Run.

Figure 39: Northwest Quadrant Perimeter Road Construction (Runway 10)

Project Justification
The landside roadway system is required in order to provide access to the proposed maintenance facilities in the Northwest Quadrant. This roadway will be non-secure and allow for public access to and from the facilities without impacting the secure areas of the airport.
The airside roadway is required as BWI Marshall currently does not have an adequate, secure non-licensed vehicle roadway (NLVR) system around the perimeter of the northwest portion of the airfield. Much of the existing roadway in the northwest quadrant is unpaved and is not suitable for heavy vehicles or frequent traffic. Major portions of the roadway are not usable during inclement weather. In addition, segments of roadway in this quadrant infringe on RSAs, TOFAs, and other restricted areas. The lack of a functional roadway in this area limits the efficient and safe flow of vehicles and cargo between the terminal area and the Midfield Cargo Complex. Vehicles currently traveling between the terminal and Midfield Cargo Complex either use Aviation Boulevard or, if not licensed for public roadways, cross active runways and taxiways. Construction of a service road in the northwest quadrant will improve airside operational safety and will further the objectives of the FAA’s program to prevent runway incursions.

Alternatives Considered

In providing access from Concourse A to the Midfield Cargo Complex, four alternatives to completing the segment of roadway between Runway 15R and Runway 10 were considered:

- **Airport Perimeter Alternative** – This alternative crosses Kitten Branch near the north end of Taxilane W and proceeds west along the fence line to a point northwest of the end of Runway 10.

- **Airport Service Road North Alternative** – This alternative crosses Kitten Branch approximately 600 feet south of the Airport Perimeter Alternative. It then runs north of the current Airport Service Road installation to reach the end of Runway 10.

- **Airport Service Road South Alternative** – This alternative is similar to the Airport Service Road North Alternative, except that it crosses south of the Airport Service Road installation.

- **Runway 15R Parallel Alternative** – This alternative runs south along Runway 15R and crosses Kitten Branch and Taxilane W along Taxiway F. It parallels Taxiway F until it reaches the end of Runway 10.

Prior to the Master Plan, the Airport Service Road North Alternative was selected as the preferred development alternative. MAA has subsequently developed only a portion (from Kitten Branch Crossing to Concourse A) of this alignment. The remaining segments of the Northwest Quadrant were realigned to best support the aircraft maintenance facilities and airside. The segments of the roadway will be constructed in Phase 1. The Airport Service Road North Alternative provides a direct route across the northwest airfield area as well as good horizontal and vertical roadway alignment. These factors allow costs to remain low relative to other alternatives, while meeting operational objectives such as decreased travel time, minimized grades, and few curves.
Design Standards
The proposed airport perimeter service road would be constructed in conformance with MAA requirements and FAA design and construction standards. It will be clear of the Runway 15R and Runway 10 RSAs and OFAs.

Navigational Aids
The proposed airport perimeter service road would be routed outside of the glide slope and localizer critical areas of Runway 15R and Runway 10.

ATCT Considerations
The proposed public-access roadway and airport perimeter service road will not pass through FAA controlled airfield operating areas.

FAR Part 77
The proposed airport perimeter service road in Phase 1 does not impact any Runway Protection Zones or approach surfaces.

Project Schedule
The design and construction process is expected to take two years and the project is estimated to be complete prior to 2020.

Existing Aircraft Rescue and Firefighting Facility (ARFF) Expansion Bays

Project Description
This project involves the construction of two additional parking bays for BWI Marshall Fire/Rescue equipment immediately adjacent to the existing ARFF building as well as additional office space (P10).

Figure 40: Existing Aircraft Rescue and Firefighting Facility (ARFF) Expansion Bays
Project Justification
Currently, the BWI Marshall Fire Rescue Service has to double-park fire and rescue equipment inside the existing ARFF bays. This can result in emergency response delays if equipment has to be moved to allow other vehicles to exit the bay. Some equipment is also parked outside and is subject to deterioration from the elements.

Alternatives Considered
No other construction alternatives were considered because there is currently only one ARFF station at BWI Marshall and it is ideally located to meet crash/rescue response time requirements.

Design Standards
The ARFF expansion will be designed to meet FAA requirements and applicable codes as required.

Navigational Aids
The ARFF expansion is not expected to interfere with any airport navigation systems.

ATCT Considerations
The planned expansion is located adjacent to, and at the same height as, the existing ARFF building. Thus, the expansion will not affect ATCT functions.

FAR Part 77
The ARFF expansion will be designed to conform to the FAR Part 77 7:1 transitional surfaces for Runway 10-28.

Project Schedule
The ARFF building expansion is expected to be complete or under construction by 2020.

Runway Deicing Chemical Storage and Access Road

Project Description
An additional 20,000 gallon glycol storage tank is proposed to be added with the two existing glycol tanks in order to meet the current demand at BWI Marshall. An access road is also proposed to improve circulation to the storage tanks.
Project Justification
MAA glycol storage capacity has been exceeded and it is necessary for an additional storage tank to be incorporated. In addition, an access road to the tanks is necessary for vehicle circulation.

Alternatives Considered
Two glycol storage tanks already exist in the current location. Therefore, a third proposed tank will be added to the area. No other alternatives were considered.

Design Standards
The storage tanks and access road will be designed to meet FAA requirements and applicable codes as required.

Navigational Aids
The additional deicing tank and associated road will not interfere with any airport navigation systems.

ATCT Considerations
The planned project will not affect the existing or proposed ATCT functions.

FAR Part 77
This project will not result in Part 77 penetrations.

Project Schedule
The proposed project is expected to be complete or under construction by 2020.
7.4. Phase 2 (2021 – 2025)

The development for the Phase 2 (2021 – 2025) projects shown on the 2015 ALP focuses on capacity and operational improvements based on the projected operational demand. The following project descriptions for Phase 2 are divided up into airside, terminal, landside, and aeronautical use projects.

7.4.1. Airside

The improvements shown for airside development focus on runway extensions, additional capacity for taxiing aircraft, and development of aviation support facilities.

Taxiway Uniform (U) 3 – Phase 2

Phase 2 of Taxiway U3 is a continuation of the Phase 1 construction and includes the segment south of Runway 10-28 to Taxiway D.

Runway 15R-33L Extension

This project involves a 1,000-foot extension to Runway 15R-33L over Dorsey Road to increase the capabilities of the runway. This also involves associated taxiway improvements to complement the runway extension.

Maintenance Main Building

Construct a new maintenance main building on the Gold Lot south of the Airport. Relocate from existing structure located near the North Air Cargo Complex.

Maintenance Bay Expansion

Construct new maintenance bay building for equipment storage adjacent to the new maintenance building.

Widening of Taxiway J

Complete pavement expansion of Taxiway J for connection from Runway 15L to terminal aprons.

Airline Cargo Demolition

Removal of existing airline cargo buildings north of the proposed ATCT to facilitate expansion of this new facility and provide additional RON parking positions.

Demolition of Maintenance Facilities

Remove existing maintenance and storage buildings and facilities to provide additional apron space for cargo use northeast of Elm Road.
Aviation Support Area

Expansion of the areas located south of Runway 10-28, adjacent to the existing Air Cargo Apron and northwest of the Taxiway F and Taxilane W intersection.

Perimeter Road Improvements

Relocations of the perimeter roads to meet FAA design standards.

Substation Relocations/Expansions

The North and South Substations will be relocated and expanded to accommodate future facility demands.

Northrop Grumman Hangar/Office

Northrop Grumman, a defense contractor with manufacturing facilities located adjacent to the Airport, has expressed a need for a new hangar and apron, administrative offices, and employee parking adjacent to their existing facilities due to their projected business growth. The new facility will be located between the Runway 10 and 15R ends.

7.4.2. Terminal

Terminal improvements include the need for additional aircraft gates and Remain Overnight (RON) parking.

Concourse A Extension

Expand Concourse A by an additional five gates.

7.4.3. Landside

Landside improvements in Phase 2 are focused on all support areas required for the Airport, along with relocation of services to facilitate property required for airport improvements.

Relocation of I-195/Aviation Blvd

This project involves the relocation of entrance and exit roadways to the terminal to allow for the expansion of the North Cargo Complex and construction of new Terminal Concourse F. This also includes the consolidation of the long-term parking lots northeast of Runway 15L-33R.

Relocation of Light Rail Tracks and Light Rail Station

Relocate the light rail tracks to facilitate cargo expansion and improvements on the northern portion of the airside. Includes new light rail facility station.
Daily Garage Expansion

Expand the existing daily garage toward the terminal to meet demand projections.

Taxicab Staging

Add new facility for taxicabs south of Aviation Boulevard and east of the Runway 15R end.

Gas Station

Construct new gas station north of the Airport for aviation landside support.

Limo/Bus/Shared Ride Staging

Expansion of limo, bus, and shared ride staging area north of the Airport (P22) for aviation support requirements.

Police Station

New police station facility for landside/airport support services northeast of the existing GA terminal area along Runway 15L-33R.

Co-Gen and Chiller Plant Expansion

Expand existing Central Utility Plant (CUP) to meet airport demands, and construct new Co-generation facility.

Pump Stations

Construct two (2) new tanks to support operations of the adjacent deicing facility near Runway 10.

Bus Staging Fuel Facility

The MAA proposes to consolidate fueling facilities dedicated to MAA-owned vehicle fleets, including buses, maintenance and other staff vehicles. The consolidated facility will be located at the existing Bus Staging Area at Elkridge Landing Road. The facility will consist of fuel pumps, canopies and a control building.

Hiker/Biker Trail Relocation

In conjunction with the preferred alignment selected for the Northwest Quadrant Airport Perimeter Service Roadway, the existing Hiker/Biker Trail section along Aviation Boulevard (west of Runway 10) must be relocated for the future airside access roadway to remain clear of the RSA and OFA for Runway 10-28.
Consolidation of Long-Term Parking Lots

Relocated Aviation Boulevard will afford the MAA with the opportunity to optimize the efficiencies and accessibility of two existing Long-Term Parking Lots through the consolidation of both. The consolidation will improve shuttle bus service and reduce overall fuel consumption.

7.5. Phase 3 (2026 – Ultimate)

Long term improvements in Phase 3 (2026 – Ultimate) are focused on meeting the ultimate capacity requirements for the Airport. The following project descriptions for Phase 3 are divided into the following categories, airside, terminal, and landside projects.

7.5.1. Airside

Parallel Runway 10R-28L and Associated Taxiways

Construct a new 9,000-foot parallel Runway 10R-28L to allow for additional capacity at the Airport. This project also involves the construction of associated taxiways and NAVAIDS for the new runway.

Runway 15L Improvements

This project involves all required improvements to Runway 15L-33R to meet FAA design standards, which includes glide slope relocation, shoulders, and fillets.

Aviation Support

Develop area south of Future Runway 10R in support of airside functions.

7.5.2. Terminal

Concourse F

Construct a new 14 gate Concourse F in the terminal area to allow for additional passenger capacity. Apron and taxiway access to this new terminal will be included with the improvements.

7.5.3. Landside

Cargo Improvements

Relocation and expansion of the North Cargo Complex including multiple cargo facilities with concession screening facility which will allow for additional cargo capacity and also provide area needed for the construction of the new Concourse F.

Truck Staging

A new truck staging facility will be constructed on the northern end of the Airport.
MAC Building

Replace the MAC building next to the proposed maintenance storage complex on the southern part of the Airport.

Light Rail Station

Construct additional light rail station on northern portion of airport property near the future Concourse F. This project could potentially occur in Phase 2 if the station is proposed to be located adjacent to existing Airport Parking.

Automated People Mover System (APM)

This project involves the addition of an Automated People Mover System (APM) connecting travelers and visitors from the BWI Rail Station to the terminal.

APM Maintenance Facility/Transfer Station

New facility to service Automated People Mover on the north side of the Airport and south of Aviation Boulevard.

Non-Aviation Support Areas

Develop multiple areas on airport property, on and off the main campus, to enhance revenue generation through various commercial service ventures.

8. Wildlife Hazard Management Issues

The MAA has a FAA-approved Wildlife Hazard Management Plan (WHMP), which is reviewed and updated yearly as part of the Part 139 inspection. The review and update consists of actually editing the WHMP with corrections, additions and/or deletions of information since the previous year; a Wildlife Management Plan Checklist per 14 CFR 139.337 (f); and a Wildlife Management Plan review letter. These efforts are coordinated with FAA’s Certification Inspector and Region annually.

9. Preliminary Identification of Environmental Features

The MAA has updated resource management plans for wetlands, forests, stormwater management, and cultural resources that identify those resources and/or areas of the natural environment of the Airport that would need to be analyzed during a NEPA environmental study. Additionally, MAA has an updated air quality management plan that helps identify current and future air quality issues for the region, including greenhouse gas emissions.
10. Capital Improvement Program

The Airport Capital Improvement Plan (ACIP) summaries for BWI Marshall are shown on the following pages.
Table 16: BWI ALP Projects (Phase 1)

<table>
<thead>
<tr>
<th>Project Title/Description</th>
<th>Estimated Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airfield and Airside Improvements</td>
<td></td>
</tr>
<tr>
<td>Relocate Taxiways Romeo (R) and Foxtrot (F)</td>
<td>$88,421,000</td>
</tr>
<tr>
<td>Taxiway Uniform (U) 3 – Phase 1</td>
<td>$5,000,000</td>
</tr>
<tr>
<td>International Terminal Area Taxiway Fillets/Shoulders</td>
<td>$14,000,000</td>
</tr>
<tr>
<td>New Infill Pavement Near Taxiways T, P, and Future P</td>
<td>$15,200,000</td>
</tr>
<tr>
<td>Taxiway Connectors (between Taxiways T-P)</td>
<td>$4,300,000</td>
</tr>
<tr>
<td>Relocate Taxiways Kilo (K) and Lima (L)</td>
<td>$2,400,000</td>
</tr>
<tr>
<td>Isolation/RON Apron Construction</td>
<td>$19,100,000</td>
</tr>
<tr>
<td>Runway 28 Deicing Pad Expansion</td>
<td>$22,000,000</td>
</tr>
<tr>
<td>Obstruction Removal</td>
<td>$350,000</td>
</tr>
<tr>
<td>Relocate Taxiway Hotel (H)</td>
<td>$20,000,000</td>
</tr>
<tr>
<td>Apron Fill at North Cargo Positions F18/F20</td>
<td>$2,520,000</td>
</tr>
<tr>
<td>VSR Section from Runway 33L to Future Fire Training Facility</td>
<td>$1,221,000</td>
</tr>
<tr>
<td>Taxiway Victor (V) Relocation</td>
<td>$13,730,000</td>
</tr>
<tr>
<td>Runway 15R Pad Expansion</td>
<td>$34,894,000</td>
</tr>
<tr>
<td>Runway 10 Hold Pad</td>
<td>$12,977,000</td>
</tr>
<tr>
<td>Terminal Enhancements</td>
<td></td>
</tr>
<tr>
<td>Commuter Concourse Demolition & Remain Overnight Parking Construction</td>
<td>$15,000,000</td>
</tr>
<tr>
<td>Concourse D 2-Gate Extension</td>
<td>$35,000,000</td>
</tr>
<tr>
<td>Concourse E (4-Gate Expansion)</td>
<td>$80,000,000</td>
</tr>
<tr>
<td>Relocate Security Checkpoint Juliet</td>
<td>$250,000</td>
</tr>
<tr>
<td>Relocate Airfield Lighting Vault</td>
<td>$12,000,000</td>
</tr>
<tr>
<td>New Sky Bridge C</td>
<td>$25,000,000</td>
</tr>
<tr>
<td>Landside Improvements</td>
<td></td>
</tr>
<tr>
<td>New Terminal Response Fire Rescue Station</td>
<td>$3,200,000</td>
</tr>
<tr>
<td>New Vehicle Service Station (By Others)</td>
<td>$-</td>
</tr>
<tr>
<td>Terminal Roadway Widening and Access Improvements</td>
<td>$8,000,000</td>
</tr>
<tr>
<td>Upper Level Roadway Widening at Concourse E</td>
<td>$50,000,000</td>
</tr>
<tr>
<td>Building 113 Demolition</td>
<td>$576,000</td>
</tr>
<tr>
<td>Taxicab Support Building at Former Hotel Site</td>
<td>$2,000,000</td>
</tr>
<tr>
<td>General Aviation/Hangar Improvements</td>
<td></td>
</tr>
<tr>
<td>New Aircraft Maintenance Facilities - (By Others)</td>
<td>$-</td>
</tr>
<tr>
<td>Support Facilities</td>
<td></td>
</tr>
<tr>
<td>Second FBO – (By Others)</td>
<td>$-</td>
</tr>
<tr>
<td>New Airport Traffic Control Tower (ATCT) - (By Others)</td>
<td>$-</td>
</tr>
<tr>
<td>Relocate Fire Training Facility</td>
<td>$18,000,000</td>
</tr>
<tr>
<td>Airport Maintenance Complex Relocation and Consolidation (Phase 1)</td>
<td>$38,500,000</td>
</tr>
<tr>
<td>Northwest Quadrant Perimeter Road Construction (Runway 10)</td>
<td>$11,000,000</td>
</tr>
<tr>
<td>Existing Aircraft Rescue and Firefighting Facility (ARFF) Expansion Bays</td>
<td>$2,100,000</td>
</tr>
<tr>
<td>Runway Deicing Chemical Storage and Access Road</td>
<td>$1,100,000</td>
</tr>
<tr>
<td>ALP PROJECTS SUBTOTAL</td>
<td>$564,300,000</td>
</tr>
</tbody>
</table>
Table 17: Additional Projects (2013-2020) - BWI Paving (not included in ALP)

<table>
<thead>
<tr>
<th>Project Title/Description</th>
<th>Estimated Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxiway G and Taxiway R Mill and Overlay</td>
<td>$2,813,962</td>
</tr>
<tr>
<td>Taxiway P Mill and Overlay</td>
<td>$616,976</td>
</tr>
<tr>
<td>Taxiway A Mill and Overlay</td>
<td>$1,970,530</td>
</tr>
<tr>
<td>Taxilane at Ramp AB Mill and Overlay</td>
<td>$769,672</td>
</tr>
<tr>
<td>B Gates, Concrete Pavement Restoration</td>
<td>$4,775,687</td>
</tr>
<tr>
<td>Taxiway F, Mill and Overlay</td>
<td>$3,198,126</td>
</tr>
<tr>
<td>Cargo Ramp, Mill and Overlay</td>
<td>$7,261,355</td>
</tr>
<tr>
<td>Cargo Ramp, Concrete Pavement Restoration</td>
<td>$888,216</td>
</tr>
<tr>
<td>Taxilane AA, Mill and Overlay</td>
<td>$3,452,403</td>
</tr>
<tr>
<td>Ramp BC, Mill and Overlay</td>
<td>$820,191</td>
</tr>
<tr>
<td>Ramp DY, Mill and Overlay</td>
<td>$1,580,553</td>
</tr>
<tr>
<td>Taxiway A Reconstruction</td>
<td>$35,000,000</td>
</tr>
<tr>
<td>Ramp DD, Complete Reconstruction</td>
<td>$30,362,890</td>
</tr>
<tr>
<td>Ramp EE, Mill and Overlay</td>
<td>$3,219,232</td>
</tr>
<tr>
<td>Taxilane JJ, Complete Reconstruction</td>
<td>$6,643,247</td>
</tr>
<tr>
<td>Ramp DE, Complete Reconstruction</td>
<td>$34,162,324</td>
</tr>
<tr>
<td>A Gates, Concrete Pavement Restoration</td>
<td>$1,461,429</td>
</tr>
<tr>
<td>C Gates, Concrete Pavement Restoration</td>
<td>$1,911,800</td>
</tr>
<tr>
<td>E Gates, Concrete Pavement Restoration</td>
<td>$3,462,219</td>
</tr>
<tr>
<td>GA Ramp (GA3, GA4, GA5, GA8), Mill and Overlay</td>
<td>$5,356,530</td>
</tr>
<tr>
<td>GA Ramp (GA6, GA7), Mill and Overlay</td>
<td>$13,355,509</td>
</tr>
<tr>
<td>Mid-Cargo Ramp and Taxiways G, R, Mill and Overlay</td>
<td>$9,331,300</td>
</tr>
<tr>
<td>Taxiway D Mill and Overlay</td>
<td>$958,934</td>
</tr>
<tr>
<td>ARFF Parking PCC Restoration</td>
<td>$332,007</td>
</tr>
<tr>
<td>Taxi Lot 2" Mill & Overlay</td>
<td>$633,311</td>
</tr>
<tr>
<td>GA Parking AC Reconstruction (By Others)</td>
<td>-</td>
</tr>
<tr>
<td>Cargo Service Road 2" Overlay</td>
<td>$257,260</td>
</tr>
<tr>
<td>Fuel Farm Rd 2" Mill & Overlay and PCC Restoration</td>
<td>$856,463</td>
</tr>
<tr>
<td>Old Fed-Ex Facility Lot 2" Mill & Overlay</td>
<td>$1,393,493</td>
</tr>
<tr>
<td>Amtrak Way 2" Mill & Overlay</td>
<td>$538,506</td>
</tr>
<tr>
<td>Kaufman Building Lot 2" Mill & Overlay</td>
<td>$215,652</td>
</tr>
<tr>
<td>Daily Road AC Reconstruct</td>
<td>$752,001</td>
</tr>
<tr>
<td>Long-Term Parking Lot A 2" Mill & Overlay</td>
<td>$13,205,932</td>
</tr>
<tr>
<td>Mathison Way 2" Mill & Overlay</td>
<td>$1,310,517</td>
</tr>
<tr>
<td>Old Fort Meade Road 2" Mill & Overlay</td>
<td>$1,054,504</td>
</tr>
<tr>
<td>Amtrak Way PCC Restoration</td>
<td>$266,919</td>
</tr>
<tr>
<td>GA Parking 2" Mill & Overlay (By Others)</td>
<td>-</td>
</tr>
<tr>
<td>Taxiways J, K, Q Mill & Overlay</td>
<td>$5,997,326</td>
</tr>
<tr>
<td>Taxiways K, L, M Mill & Overlay</td>
<td>$783,822</td>
</tr>
<tr>
<td>Taxiways M and S Mill & Overlay</td>
<td>$2,097,515</td>
</tr>
<tr>
<td>ARFF Access Road Reconstruction</td>
<td>$1,816,407</td>
</tr>
</tbody>
</table>

Paving Projects Subtotal | **$204,884,720**

TOTAL | **$769,184,720**
Appendix A – FAA Terminal Area Forecasts

<table>
<thead>
<tr>
<th>YEAR</th>
<th>AIR CARRIER</th>
<th>COMMUTER AIR CARRIER</th>
<th>TOTAL ENPLANEMENTS</th>
<th>ITINERANT AIRCRAFT</th>
<th>ITINERANT AIR TAXI</th>
<th>ITINERANT GA</th>
<th>ITINERANT MILITARY</th>
<th>TOTAL ITINERANT</th>
<th>LOCAL GA</th>
<th>TOTAL LOCAL OPERATIONS</th>
<th>TOTAL AIRCRAFT OPERATIONS</th>
<th>TOTAL RADAR OPERATIONS</th>
<th>TOTAL BASED AIRCRAFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>4,498,900</td>
<td>529,300</td>
<td>5,028,200</td>
<td>157,829</td>
<td>88,120</td>
<td>54,670</td>
<td>1,880</td>
<td>302,499</td>
<td>826</td>
<td>140</td>
<td>303,465</td>
<td>520,100</td>
<td>107</td>
</tr>
<tr>
<td>1991</td>
<td>4,448,719</td>
<td>579,038</td>
<td>5,027,757</td>
<td>148,637</td>
<td>84,003</td>
<td>46,628</td>
<td>1,741</td>
<td>281,009</td>
<td>1,211</td>
<td>100</td>
<td>282,320</td>
<td>-</td>
<td>97</td>
</tr>
<tr>
<td>1992</td>
<td>4,131,980</td>
<td>591,872</td>
<td>4,723,852</td>
<td>128,648</td>
<td>85,862</td>
<td>42,986</td>
<td>2,542</td>
<td>260,038</td>
<td>4,844</td>
<td>962</td>
<td>265,844</td>
<td>-</td>
<td>82</td>
</tr>
<tr>
<td>1993</td>
<td>3,772,189</td>
<td>664,781</td>
<td>4,436,970</td>
<td>120,201</td>
<td>90,082</td>
<td>40,553</td>
<td>2,125</td>
<td>252,961</td>
<td>7,286</td>
<td>1,427</td>
<td>261,674</td>
<td>-</td>
<td>79</td>
</tr>
<tr>
<td>1994</td>
<td>5,501,668</td>
<td>618,316</td>
<td>6,119,984</td>
<td>156,024</td>
<td>78,384</td>
<td>37,376</td>
<td>2,744</td>
<td>274,528</td>
<td>9,834</td>
<td>2,030</td>
<td>286,392</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>1995</td>
<td>5,929,125</td>
<td>666,390</td>
<td>6,595,515</td>
<td>153,313</td>
<td>88,666</td>
<td>34,722</td>
<td>1,992</td>
<td>278,693</td>
<td>16,944</td>
<td>1,295</td>
<td>296,932</td>
<td>-</td>
<td>82</td>
</tr>
<tr>
<td>1996</td>
<td>5,828,667</td>
<td>707,217</td>
<td>6,535,884</td>
<td>150,509</td>
<td>87,782</td>
<td>22,141</td>
<td>1,393</td>
<td>261,825</td>
<td>7,959</td>
<td>372</td>
<td>270,156</td>
<td>267,990</td>
<td>84</td>
</tr>
<tr>
<td>1997</td>
<td>6,439,042</td>
<td>613,818</td>
<td>7,052,860</td>
<td>153,263</td>
<td>82,923</td>
<td>21,780</td>
<td>1,635</td>
<td>259,601</td>
<td>7,058</td>
<td>276</td>
<td>266,935</td>
<td>506,242</td>
<td>63</td>
</tr>
<tr>
<td>1998</td>
<td>6,759,369</td>
<td>510,313</td>
<td>7,269,682</td>
<td>160,932</td>
<td>78,385</td>
<td>24,246</td>
<td>2,598</td>
<td>266,161</td>
<td>11,185</td>
<td>264</td>
<td>277,610</td>
<td>523,365</td>
<td>63</td>
</tr>
<tr>
<td>2001</td>
<td>9,720,408</td>
<td>595,191</td>
<td>10,315,599</td>
<td>230,103</td>
<td>63,061</td>
<td>26,992</td>
<td>2,727</td>
<td>322,883</td>
<td>5,543</td>
<td>2</td>
<td>328,421</td>
<td>545,079</td>
<td>67</td>
</tr>
<tr>
<td>2002</td>
<td>8,942,833</td>
<td>506,348</td>
<td>9,449,181</td>
<td>210,349</td>
<td>66,037</td>
<td>29,728</td>
<td>3,478</td>
<td>309,592</td>
<td>689</td>
<td>-</td>
<td>310,281</td>
<td>520,891</td>
<td>87</td>
</tr>
<tr>
<td>2003</td>
<td>9,083,637</td>
<td>356,371</td>
<td>9,440,008</td>
<td>209,468</td>
<td>46,700</td>
<td>33,548</td>
<td>2,306</td>
<td>292,022</td>
<td>3,640</td>
<td>337</td>
<td>295,999</td>
<td>160,918</td>
<td>102</td>
</tr>
<tr>
<td>2004</td>
<td>9,805,532</td>
<td>355,738</td>
<td>10,161,270</td>
<td>215,257</td>
<td>50,909</td>
<td>34,976</td>
<td>1,092</td>
<td>302,234</td>
<td>5,327</td>
<td>189</td>
<td>307,750</td>
<td>-</td>
<td>96</td>
</tr>
<tr>
<td>2005</td>
<td>9,322,247</td>
<td>392,053</td>
<td>9,714,300</td>
<td>219,396</td>
<td>54,039</td>
<td>31,850</td>
<td>865</td>
<td>306,150</td>
<td>6,337</td>
<td>147</td>
<td>312,634</td>
<td>-</td>
<td>96</td>
</tr>
<tr>
<td>2008</td>
<td>9,733,554</td>
<td>609,204</td>
<td>10,342,758</td>
<td>207,083</td>
<td>48,575</td>
<td>23,856</td>
<td>787</td>
<td>280,301</td>
<td>5,433</td>
<td>40</td>
<td>285,774</td>
<td>-</td>
<td>96</td>
</tr>
<tr>
<td>2009</td>
<td>9,591,301</td>
<td>522,215</td>
<td>10,113,516</td>
<td>199,995</td>
<td>44,386</td>
<td>17,172</td>
<td>728</td>
<td>262,281</td>
<td>3,130</td>
<td>12</td>
<td>265,423</td>
<td>-</td>
<td>86</td>
</tr>
<tr>
<td>2010</td>
<td>10,143,381</td>
<td>467,948</td>
<td>10,611,329</td>
<td>207,276</td>
<td>43,045</td>
<td>18,912</td>
<td>774</td>
<td>270,007</td>
<td>5,300</td>
<td>-</td>
<td>275,307</td>
<td>-</td>
<td>75</td>
</tr>
<tr>
<td>YEAR</td>
<td>AIR CARRIER</td>
<td>COMMUTER AIR CARRIER</td>
<td>TOTAL ENPLANEMENTS</td>
<td>ITINERANT AIRCRAFT</td>
<td>ITINERANT AIR TAXI</td>
<td>ITINERANT GA</td>
<td>ITINERANT MILITARY</td>
<td>TOTAL ITINERANT</td>
<td>LOCAL GA</td>
<td>LOCAL MILITARY</td>
<td>TOTAL LOCAL OPERATIONS</td>
<td>TOTAL AIRCRAFT OPERATIONS</td>
<td>TOTAL RADAR OPERATIONS</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>---------</td>
<td>--------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>2013*</td>
<td>10,020,984</td>
<td>420,288</td>
<td>10,441,272</td>
<td>206,084</td>
<td>37,504</td>
<td>14,843</td>
<td>960</td>
<td>259,391</td>
<td>268</td>
<td>-</td>
<td>259,659</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2016*</td>
<td>10,736,746</td>
<td>481,242</td>
<td>11,217,988</td>
<td>223,204</td>
<td>34,918</td>
<td>15,665</td>
<td>960</td>
<td>282,066</td>
<td>268</td>
<td>-</td>
<td>282,334</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2019*</td>
<td>12,053,701</td>
<td>516,330</td>
<td>12,570,031</td>
<td>246,370</td>
<td>33,809</td>
<td>16,007</td>
<td>960</td>
<td>307,884</td>
<td>268</td>
<td>-</td>
<td>308,152</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2020*</td>
<td>12,401,807</td>
<td>525,108</td>
<td>12,926,915</td>
<td>252,037</td>
<td>33,268</td>
<td>16,180</td>
<td>960</td>
<td>320,245</td>
<td>268</td>
<td>-</td>
<td>320,513</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2021*</td>
<td>12,759,972</td>
<td>534,035</td>
<td>13,294,007</td>
<td>257,833</td>
<td>32,736</td>
<td>16,355</td>
<td>960</td>
<td>331,666</td>
<td>268</td>
<td>-</td>
<td>332,034</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2022*</td>
<td>13,128,486</td>
<td>543,114</td>
<td>13,671,600</td>
<td>263,763</td>
<td>32,212</td>
<td>16,531</td>
<td>960</td>
<td>343,532</td>
<td>268</td>
<td>-</td>
<td>343,900</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2023*</td>
<td>13,507,649</td>
<td>552,347</td>
<td>14,059,996</td>
<td>269,829</td>
<td>31,697</td>
<td>16,710</td>
<td>960</td>
<td>354,466</td>
<td>268</td>
<td>-</td>
<td>354,834</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2024*</td>
<td>13,897,768</td>
<td>561,737</td>
<td>14,459,505</td>
<td>276,035</td>
<td>31,190</td>
<td>16,891</td>
<td>960</td>
<td>365,951</td>
<td>268</td>
<td>-</td>
<td>366,320</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2025*</td>
<td>14,299,160</td>
<td>571,287</td>
<td>14,870,447</td>
<td>282,384</td>
<td>30,691</td>
<td>17,074</td>
<td>960</td>
<td>377,909</td>
<td>268</td>
<td>-</td>
<td>378,278</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2026*</td>
<td>14,712,152</td>
<td>580,999</td>
<td>15,293,151</td>
<td>288,879</td>
<td>30,200</td>
<td>17,259</td>
<td>960</td>
<td>389,968</td>
<td>268</td>
<td>-</td>
<td>390,338</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2027*</td>
<td>15,137,079</td>
<td>590,876</td>
<td>15,727,955</td>
<td>295,524</td>
<td>29,717</td>
<td>17,446</td>
<td>960</td>
<td>397,934</td>
<td>268</td>
<td>-</td>
<td>398,304</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2028*</td>
<td>15,574,285</td>
<td>600,921</td>
<td>16,175,206</td>
<td>302,321</td>
<td>29,242</td>
<td>17,635</td>
<td>960</td>
<td>406,421</td>
<td>268</td>
<td>-</td>
<td>406,791</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2029*</td>
<td>16,024,126</td>
<td>611,137</td>
<td>16,635,263</td>
<td>309,275</td>
<td>28,774</td>
<td>17,826</td>
<td>960</td>
<td>415,997</td>
<td>268</td>
<td>-</td>
<td>416,367</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2031*</td>
<td>16,963,186</td>
<td>632,092</td>
<td>17,595,278</td>
<td>323,666</td>
<td>27,860</td>
<td>18,214</td>
<td>960</td>
<td>435,576</td>
<td>268</td>
<td>-</td>
<td>435,946</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2032*</td>
<td>17,453,160</td>
<td>642,838</td>
<td>18,096,004</td>
<td>331,111</td>
<td>27,414</td>
<td>18,411</td>
<td>960</td>
<td>445,685</td>
<td>268</td>
<td>-</td>
<td>446,055</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2033*</td>
<td>17,957,306</td>
<td>653,766</td>
<td>18,611,072</td>
<td>338,726</td>
<td>26,975</td>
<td>18,610</td>
<td>960</td>
<td>455,922</td>
<td>268</td>
<td>-</td>
<td>456,292</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2034*</td>
<td>18,476,017</td>
<td>664,880</td>
<td>19,140,897</td>
<td>346,517</td>
<td>26,544</td>
<td>18,811</td>
<td>960</td>
<td>466,068</td>
<td>268</td>
<td>-</td>
<td>466,438</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>YEAR</td>
<td>AIR CARRIER</td>
<td>COMMUTER AIR CARRIER</td>
<td>TOTAL ENPLANEMENTS</td>
<td>ITINERANT AIRCRAFT</td>
<td>ITINERANT AIR TAXI</td>
<td>ITINERANT GA</td>
<td>ITINERANT MILITARY</td>
<td>TOTAL ITINERANT</td>
<td>LOCAL GA</td>
<td>LOCAL MILITARY</td>
<td>TOTAL LOCAL OPERATIONS</td>
<td>TOTAL AIRCRAFT OPERATIONS</td>
<td>TOTAL RADAR OPERATIONS</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>---------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>2038*</td>
<td>20,123,845</td>
<td>699,369</td>
<td>20,823,214</td>
<td>370,981</td>
<td>25,290</td>
<td>19,428</td>
<td>960</td>
<td>416,659</td>
<td>268</td>
<td>-</td>
<td>268</td>
<td>416,927</td>
<td>-</td>
</tr>
<tr>
<td>2039*</td>
<td>20,705,172</td>
<td>711,258</td>
<td>21,416,430</td>
<td>379,513</td>
<td>24,885</td>
<td>19,639</td>
<td>960</td>
<td>424,997</td>
<td>268</td>
<td>-</td>
<td>268</td>
<td>425,265</td>
<td>-</td>
</tr>
<tr>
<td>2040*</td>
<td>21,303,302</td>
<td>723,349</td>
<td>22,026,651</td>
<td>388,242</td>
<td>24,486</td>
<td>19,851</td>
<td>960</td>
<td>433,539</td>
<td>268</td>
<td>-</td>
<td>268</td>
<td>433,807</td>
<td>-</td>
</tr>
</tbody>
</table>

*Forecasts

Source: FAA TAF, January 2013
April 2, 2015

Mr. Paul Shank, P.E.
Chief Engineer
Maryland Aviation Administration
P.O. Box 8766
BWI Airport, Maryland 21240

Reference: Baltimore-Washington International Airport
Interim Airport Layout Plan (ALP)

Dear Mr. Shank:

The proposed interim Airport Layout Plan (ALP) submitted November 2014 consisting of sheet 3 for the Baltimore-Washington International Airport is hereby approved. This ALP included changes to primarily reflect as built Runway Safety Area (RSA), LOI funded taxiway improvements, and minor terminal security improvement projects. The limiting conditions in our previous ALP approval letters remain in effect, most notably that the FAA has not concurred with the proposed runway 10R/28L. The review process included coordination with other FAA divisions through the airspace process (case number 2014-AEA-1269-NRA).

The contents of the ALP revision do not necessarily reflect the official views or policies of the FAA. Approval of the ALP by the FAA does not in any way constitute a commitment on the part of the United States to participate in any development depicted therein. No new modifications to FAA design standards are noted on this revision to the ALP.

All proposed development identified on the ALP requires environmental review and shall not be undertaken without prior written environmental approval by the FAA.

You are also reminded of your continuing responsibility to keep your ALP current at all times. Each revision must be submitted to this office for review and approval. Your ALP should be reviewed at regular intervals and updated as necessary to include this revision and any other previous revisions.

FAA’s approval of this ALP represents acceptance of the location of the facilities depicted. Prior to construction, the airport owner is required to resubmit for approval the final locations, heights, and exterior finishes of structures if they have changed from that
previously presented. FAA’s concerns are obstructions, impact on electronic aids and adverse effect of controller view of aircraft approaches and ground movements, which could adversely effect the safety, efficiency or utility of the airport.

Please contact me if you have any questions concerning this approval.

Sincerely,

Thomas A. Priscilla, Jr.
Washington Airports District Office
Memorandum

Date: November 21, 2014

To: AEA-620 (Felix), Atlanta FPO (Lebar), AT-OEG (Dull), FS (Aviles),
AJW-E24B (Loverde), AT-OSG (Fowler), ATCT (Proudfoot)

Prepared by: Washington ADO, Tom Priscilla

Subject: 2014-AEA-1269-NRA
Baltimore-Washington International Airport (BWI)
Updated Airport Layout Plan (ALP)

The Maryland Aviation Administration (Sponsor), owner and operator of BWI located in
Baltimore, Maryland, has updated the approved Airport Layout Plan (ALP). The first set of
changes is to reflect the construction of previously coordinated projects:

1. Runway 10/28, 15L/33R, and 15R/33L safety area improvements.
2. Runway 10/28 and 15R/33L rehabilitations.
3. Various taxiway improvements to comply with Advisory Circular requirements
 - Taxiway “D”
 - Taxiway “U”
4. Pier B/C Connector
5. Pier C/D Connector
6. Pier D/E Connector
7. Pier E 2 gate extension
8. ATO ATCT site 2A

The second set of changes is to reflect the proposed projects:

9. Relocation of the ARFF training facility (P45)
10. RON Apron adjacent to ARFF building (P-10)
11. Maintenance complex buildings P30, P31, P32, and P33 south of proposed
 runway 10R/28L
12. Aircraft maintenance hangar P11 north of runway 10
13. Reconfigured taxiway “F” into dual parallel taxiway system serving runway 10
14. Various taxiway improvements to comply with Advisory Circular requirements
 - Taxiway “H”
 - Taxiway “F”
 - Taxiway “U3”
 - Runway 15L/33R taxiway system
update to ALP. due to java issue, memo describing proposed changes cannot be attached but is included with drawing mailed out separately.